Transactions on Transport Sciences 2025, 16(3):32-36 | DOI: 10.5507/tots.2025.008

Passenger-Weighted Route Deviation Ratio (PWRDR) as a Parameter of Public Transport Quality

Patrik Horazdovsky, Ondrej Pribyl
Faculty of Transportation Sciences Czech Technical University in Prague

Abstract: Designing efficient and competitive public transport services in urban areas requires a balance between service quality, accessibility, and operational efficiency. While tra- ditional planning methods primarily optimize for travel time and coverage, this paper introduces the Passenger-Weighted Route Deviation Ratio (PWRDR) as a novel parameter to evaluate the quality of transit routes. The PWRDR quantifies the extent to which a public transport line deviates from its direct path to serve additional areas, balancing accessibility and efficiency. This parameter considers the relationship between deviation length, travel time impact, population served, and the functional purpose of the route. We present a mathematical formulation and a methodological framework for integrating PWRDR into public transport planning. By incorporating this metric, planners can better assess the trade-off between directness and service coverage, leading to more effective and user-centered transit network designs.

Keywords: Public transport, Public transport Quality, Travel Time, Transport planning, Route Deviation

Received: May 2, 2025; Revised: May 2, 2025; Accepted: May 6, 2025; Published: May 28, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Horazdovsky, P., & Pribyl, O. (2025). Passenger-Weighted Route Deviation Ratio (PWRDR) as a Parameter of Public Transport Quality. Transactions on Transport Sciences16(SI SCSP conference), 32-36. doi: 10.5507/tots.2025.008
Download citation

References

  1. M. Karatas, N. Razi, and H. Tozan, A comparisonof p-median and maximal coverage locationmodels with Qcoverage requirement, *ProcediaEngineering*, vol. 149, pp. 169176, 2016, doi:10.1016/j.proeng.2016.06.652. Go to original source...
  2. S. M. Faradunbeh, H. Li, M. Kang, and Ch.Iim, Optimization of bus routes using modifiedA* algorithm in Incheon, South Korea, *arXivpreprint*, arXiv:2309.10006, 2023. [Online]. Available:https://arxiv.org/abs/2309.10006
  3. E. W. Dijkstra, A note on two problems in connexionwith graphs, *Numerische Mathematik*, vol. 1, pp.269-271, 1959. Go to original source...
  4. A. Bozyigit, G. Alankus, and E. Nasiboglu, Public transport route planning: Modified Dijkstras algorithm, in *Proc. Int. Conf. Computer Science and Engineering(UBMK)*, Antalya, Turkey, 2017, pp. 502-505, doi:10.1109/UBMK.2017.8093444. Go to original source...
  5. V. Lauda, V. Novotny, C. Csiszar, and D. Kocarkova, Impact of public transport quality offer on travel demand case study of Prague suburban railways: Settingup the research, *Transport Means - Proc. Int. Conf.*,vol. 1, pp. 116-121, 2023.
  6. M. Jirmanova, N. Richterova, and V. Novotny, Optimizationof the quality of public transport operationevaluation method, in *Proc. Smart Cities Symp.Prague (SCSP)*, Prague, Czech Republic, 2024, doi:10.1109/scsp61506.2024.10552725. Go to original source...
  7. G. Beirao and J. S. Cabral, Enhancing service quality inpublic transport systems, *WIT Trans. Built Environ.*,vol. 89, pp. 837-845, 2006, doi: 10.2495/UT060811. Go to original source...
  8. C. von Ferber and Y. Holovatch, Fractal transit networks:Self-avoiding walks and Levy flights, *Eur. Phys.J. Spec. Top.*, vol. 216, no. 1, pp. 49-55, 2013, doi:10.1140/epjst/e2013-01728-0. Go to original source...
  9. Public Transport Users Association (PTUA),Driven around the bendMelbournes meanderingbus routes, May 2012. [Online]. Available:https://www.ptua.org.au/2012/06/08/meandering-busroutes/
  10. P. Horazdovsky and M. Svitek, Implementation of smartdynamic public transport into a real operation, in *Proc.Smart City Symp. Prague (SCSP)*, 2021, pp. 1-6, doi:10.1109/SCSP49987.2021.9447379. Go to original source...
  11. X. Sun and S. Liu, Research on route deviation transitoperation schedulingA case study in Suburb No. 5Road of Harbin, *Sustainability*, vol. 14, no. 2, p. 633, 2022, doi: 10.3390/su14020633. Go to original source...
  12. H. Yang, T. S. Zhao, and M. Shao, Genetic algorithmfor solving the route optimization problem in publictransportation networks, *Open J. Appl. Sci.*, vol. 10,no. 1, pp. 1-14, 2020, doi: 10.4236/ojapps.2020.101001. Go to original source...
  13. V. Janos, *Optimization of Transport Networks:Methods and Applications*. Prague: Czech TechnicalUniversity in Prague, 2021. [Online]. Available:https://dspace.cvut.cz/bitstream/handle/10467/104294/Habilita
  14. M. J. Geiger, Genetic algorithms for multipleobjective vehicle routing, *arXiv preprint*,arXiv:0809.0416, 2008. [Online]. Available:https://arxiv.org/abs/0809.0416
  15. A. Schobel, Line planning in public transportation:models and methods, *OR Spectrum*, vol. 34, no. 3,pp. 491-510, 2012. Go to original source...
  16. R. Borndorfer, M. Grotschel, and M. E. Pfetsch, Models for line planning in public transport, *ZIB-Report04-10*, Konrad-Zuse-Zentrum f¨ur InformationstechnikBerlin, 2004.
  17. M. A. Saif, M. Maghrour Zefreh, and A. Torok,Public transport accessibility: A literature review,*Period. Polytech. Transp. Eng.*, vol. 3, 2018, doi:10.3311/PPtr.12072. Go to original source...
  18. L. Sun, J. G. Jin, D.-H. Lee, K. Axhausen, and A. Erath,Demand-driven timetable design for metro services,*Transp. Res. Part C Emerg. Technol.*, vol. 46, pp.284299, 2014, doi: 10.1016/j.trc.2014.06.003. Go to original source...
  19. X. Goaoc, H.-S. Kim, and S. Lazard, Bounded-curvatureshortest paths through a sequence of points using convexoptimization, *SIAM J. Comput.*, vol. 42, no. 2, pp.662-684, 2013, doi: 10.1137/100816079. Go to original source...
  20. O. A. Gbadamosi and D. R. Aremu, Modification ofDijkstras algorithm for best alternative routes, in *Proc.8th Int. Congr. Inf. Commun. Technol. (ICICT)*, 2024. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.