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ABSTRACT: The standard time allocation of classic road junctions in major towns and cities 
are often the main indicators of the government policy and management strategy in reducing 
traffic jams with its associated emission production from the traffic flow. In this paper, 
we apply the circular colouring method of Graph Theory (Vince, 1988; Zhu, 2001), 
to the emission reduction problem at a traffic road junction. The result of this paper 
is addressing this problem by optimizing the waiting time interval for two selected models. 
A traffic road junction is modelled as a finite graph G = (V, E). Each vertex v of G represents 
a given traffic light. Two vertices v and u are connected with an edge if their corresponding 
represented traffic flows collide and each time in such case they are given an overlapping 
green light time interval. 
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1 INTRODUCTION 
 
In day to day life, in every major town or city the problem of human – machine interaction 
has been a major issue for decades. Vehicles, automobiles and other self-propelled machines 
play a vital role in the economic infrastructure of both state and private companies. However, 
the communication network and road capacities of major cities are not efficiently solved. 
In most cases, this leads to catastrophic traffic jams on road junctions due to ineffective traffic 
light arrangements. This paper is expected to give guidelines and emphasis on how 
to minimize emissions at different types of classic road traffic junctions applying the circular 
colouring method (Zhu, 2001). This paper shows a partial improvement in network and traffic 
management policies which might contribute to reducing carbon emissions and associated 
problems such as public transport priority, traffic signal control and coordination, as well 
as their layout. The development of Intelligent Transport systems and associated 
improvements in urban traffic control quality has a crucial role in the road traffic junction 
quality impact of road traffic. 

Polluting emissions, aggravated by traffic composition, i.e. the number of vehicles 
and their categories, the drivers’ experience as well as their behavior, seasonal weather, 
gradients and the technical conditions of vehicles and the waiting time at traffic lights, 
are the burning issues for the individual management and government policies of a given 
country or institution. For effective traffic management strategies, we have to investigate 
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the relationship between traffic flow, the emission pollutants and dispersion in the atmosphere 
and the potential impact on the processes of the network and traffic management policies.  

In this paper, we assume a graph G is finite and simple; (no loops and multiple edges). 
More specifically, a graph G= (V, E) is a pair, such that V is a finite set of vertices and E 
is the set of edges such that E ⊆ V x V (unordered pair). If u and v are connected by an edge, 
then we write uv ∈ E. 

Let n be a positive integer. Consider a crossroad with n traffic lights. Let v1, v2, vn denote 
the n traffic lights. 

Definition: We say vi and vj are incompatible if assigning an overlapping green light time 
to vi and vj green causes a traffic collision. 

Then, given a crossroad A, an undirected graph G= (V, E) corresponding to A 
is constructed as follows: The set of vertices is the set of traffic lights V= {v1, v2, vn} 
and the set of edges is the set of incompatible pairs of vertices. That is, E= {vivj: vi and vj 
are incompatible}. 

Therefore, cars are allowed to proceed by vi and vj, while vivj ∈ E avoid collision if vi 
and vj are allocated to non-overlapping time intervals. This is where circular colouring plays 
a crucial role, as we shall see shortly. 

 
 
2 OBJECTIVE 
 
This paper examines the character of two models of classic road junctions. Model I 
is presented as a twelve traffic light road junction and model II as an eleven traffic light road 
junction. These two models appear in almost all major towns and cities. For the traffic 
optimization of our selected two models, the authors applied Graph Theory, in particular 
the “circular colouring” method. This corresponds to what is known as the “circular chromatic 
number”, χc(G) of a given graph G, which we will formally define in Section 4. 
 
 
3 MODEL I: CLASSIC FOUR WAY TWELVE TRAFFIC LIGHT ROAD JUNCTION 
 
There are four roads in Figure 1, with 4 orientations, for example north, south, east and west.  
Each road has three directions: left turn, straight and right turn. Lights number 1, 2 and 3 
correspond to left, straight and right turn, respectively. A similar pattern applies to lights 
numbered 4, 5, 6; 7, 8, 9 and 10, 11, 12 (see Figure 1). Figure 1 also demonstrates how traffic 
light number 1 is in a collision course with 4 traffic lights, namely traffic lights 4, 8, 10 
and 11. 
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Figure 1: Model I: a classic road junction with twelve vertices. 
 

The following graph (Figure 2) is derived from the above four way classic road junction 
(Figure 1). This graph has twelve vertices. Each vertex represents a specific traffic light. 
Recall that the adjacency of two vertices u and v implies u and v are incompatible.  
 

 
 

Figure 2: A Graph for model I, with 12 vertices (lights) and edges connecting 
incompatible vertices. 

 
Vertex 1 (left turn) is adjacent to vertices 4, 8, 10 and 11; (as depicted in Figure 1 a vehicle 
moving from position number 1 is incompatible with vehicles moving from positions 4, 8, 10 
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and 11); vertex 2 (straight) is adjacent to vertices 4, 5, 6, 7 and 11; vertex 3 (right turn) 
is adjacent only to vertex number 11. This goes on in the same pattern (by symmetry) 
as it applies for the whole cycle up to vertex number 12, as shown in Figure 2. 

 

 
 

Figure 3: Reduced graph G1 of model I with 8 adjacent vertices. 
 

 
 

Figure 4: Model I:  The complement graph G1’ of G1; (to Figure 3 graph of incompatibility). 
 

 
 

Figure 5: Model I: A symmetric representation of G1. 
 
 
4 CIRCULAR CHROMATIC NUMBER OF A GRAPH 
  
DEFINITION: The “chromatic number”, χ(G) of a graph G is the minimum number 
of colours required to colour G properly. By proper colouring, we mean no two adjacent 
(connected by an edge) vertices should get the same colour.  
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In a traffic flow, proper colouring corresponds to requiring no two incompatible traffic lights 
should have an overlapping green light time interval. The number of colours used to colour 
a graph G corresponds to the total of one complete traffic period. That is, a period where each 
light gets exactly one green light interval. In other words, the maximum length a car 
has to wait before it gets a green light to proceed. Therefore the “chromatic number” seems 
to be an optimal solution since it minimizes the number of colours. In other words χ(G) 
is a complete traffic period length. For example, the “chromatic number” if each green light 
time is a half minute interval and if we colour G with 4 colours, then the total traffic period 
is 2 minutes. However, we shall show in Section 5 that this is not the case. 

Denote by Sp the circle in R2 (the usual X-Y plane) with circumference p centered 
at the origin of R2 and by A (Sp) the set of open arcs of Sp. 

DEFINITION: Let G=(V, E) be an undirected graph without loops. A circular colouring 
of G is a mapping cp: V→ A (Sp), such that the length of c(v) is (greater or) equal to 1 
(and in general the weight of the vertex v) and cp(v) ∩ cp(w) is empty whenever v and w 
are adjacent in G (vw ∈ E (G)). 

DEFINITION: Circular chromatic number χc(G) of a graph G=(V, E) is the infimum of 
all real numbers p, for which a circular colouring cp of G exists. 

There are several cases where χc(G) is strictly less than χ(G). Therefore, χc(G) is more 
efficient than χ(G) as is shown in this paper. In other words, the total one traffic cycle period 
can be less if we use χc(G) instead of χ(G). 

The classic approach to set a stop-go cycle for a crossroad is to determine the chromatic 
number χ(G) of the graph and to assign an interval to every colour in the minimal colouring 
of G. Since this approach is not the best with respect to the time needed for an entire cycle, 
the circular chromatic number of a graph is used. In general, every vertex in G has a weight 
which corresponds to the time for which the corresponding direction is open. 
This is necessary if the number of cars coming from different directions is not even. 
In this paper, for simplicity, we give the definition assuming that all the weights are equal to 1. 

It is easy to see (Zhu, 2001) that the “circular chromatic number” of a graph is less 
or equal to its chromatic number: 
 
Proposition 1.  χc(G) ≤ χ(G). 
 
It is shown in Zhu (2001) that this infimum is attained and thus we can replace 
it with the minimum. In what follows an arc cp(v) will be usually identified (and drawn 
in Figures) with its centre point. Thus, in the circular colouring of G the distance (along 
the circle) of two centre points corresponding to vertices connected by an edge must 
be at least 1 (given the arcs are non overlapping). 

Now consider the crossroad in Figure 1. Since there are two lanes in each direction, we shall 
assume that cars coming from direction 1 and 5 can go simultaneously. By symmetry, the same 
is true for directions 4 and 9, 7 and 11, 10 and 2. The corresponding graph is in Figure 2.  

A vertex v is called “pendant” if it is adjacent to only one vertex (degree 1). Vertices 
number 3, 6, 9 and 12 are pendants.  A pendant vertex v in G can be identified with a vertex 
of G that has a common neighbor with v, without changing χc(G) and χ(G).  Therefore, 
we can omit pendants when we study the (circular) chromatic number. As a result, we get 
the “reduced graph” G1 depicted in Figure 3. 
 
Proposition 2.  The chromatic number of the graph G1 is 4 (χ(G1 )=4). 
 
Proof:  First we prove that χ(G1) ≤ 4, by 4-colouring G1 with a colouring function c. (see Figure 2). 
Let c(v1)=c(v2)=c(v3)=R (R for Red) 

c(v4)=c(v5)=c(v6)=B (B for Blue) 
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c(v7)=c(v8)=c(v9)=G (G for Green) 
c(v10)=c(v11)=c(v12)=Y (Y for Yellow) 
Therefore:  χ(G1 ) ≤ 4. 
Now, we prove that the graph has no 3-colouring (see the symmetric representation of G1 

in Figure 5). Suppose, without loss of generality, that there is a 3-colouring c* using Blue (B), 
Green (G) and Yellow (Y). We may assume c*(v7)=B and c*(v4)=G. Now, this forces 
c*(v2)=Y (since c*(v2) is adjacent to both v7 and v4). Similarly, this forces that c*(v5)=G. 
Then c*(v10)=Y. But then v8 and v11 both have to be B, which is a contradiction, since v8 
and v11 are adjacent. Therefore, there is no such 3-colouring c* of G1.    

Therefore:  χ(G1 ) ≥ 4. We deduce that χ(G1)=4. 
  
Proposition 3.  The circular chromatic number of the graph G1 is 4; χc(G1)=4 
 
Proof:  By Propositions 1 and 2 we have that the circular chromatic number is at most 4. 

Now, we prove that it is equal to 4. In any circular colouring the arcs cp(v) and cp(w) 
can intersect only if v and w are not adjacent in G1. Consider the graph G1’ (Figure 4), 
the complement of the graph G1, i.e., vertices v and w are adjacent in G1’ if and only 
if they are not adjacent in G1. Since there is no triangle (three vertices pairwise connected) 
in G1’ there are no three vertices in G1 such that their corresponding arcs have a non-empty 
intersection. Thus, every point on the circle is contained in at most two arcs. Since there 
are eight arcs of length one, the circumference of the circle must be at least 4. 

This is an example where the circular chromatic number is identical to the chromatic 
number. However, in the next section, we show a model for which the circular chromatic 
number is clearly a more efficient method. 
 
 
5 MODEL II: CLASSIC FOUR WAY ELEVEN LIGHT ROAD JUNCTION 
 
Now, we shall examine the situation with one less direction. Consider the same crossroad 
as in Figure 1, but omit the possibility of turning left (v1) as depicted in Figure 6. We get 
the same graph G2 which is obtained from G1 by deleting v1 from G1. Again, we can study 
the reduced graph by omitting the vertices of degree 1. We get the graph G2 with seven 
vertices (Figure 7). By symmetry of G1 the statements about G2 would be true if we would 
omit an arbitrary left or straight direction from the original 12-direction crossroad.  
 
Proposition 4. The chromatic number of the graph G2 is 4; χc(G2)=4 
 
Proof:  The proof is in all respects the same as the proof of Proposition 2, since the proof 
of χ(G1)>3 is independent of the vertex v1. 
 
Proposition 5. The circular chromatic number of the graph G2 is 7/2; 
χc(G2)= 7/2. 
 
Prooof:  The 7/2 circular colouring shown in Figure 10 proves that the circular chromatic 
number is at most 7/2. By the same argument as in the proof of Proposition 3, no three arcs 
can overlap, and since there are seven arcs, the circular chromatic number is at least 7/2. 
Hence, χc(G2) = 7/2. 
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Figure 6: Model II: A classic road junction with eleven vertices. 

 
To see the validity of the 7/2 colouring of G2 given in Figure 10, it suffices to verify (using 
Figure 11) that the following two constraints are satisfied: 

 Every traffic light, (v2, v3, …, and v10) has received at least one full green light period;  
 No overlapping green light time is assigned to any incompatible pair. 

The fact that the total one traffic period is 7/2 time units is rather straight forward from either 
of the two figures. 

Note also that the traffic lights of Model II that are reduced, v3, v6, v9 and v12, (see Figure 7); 
any amount of green light interval that does not overlap with v11, v2, v5 and v8, respectively 
can now be assigned. 
 

 
 

Figure 7: A graph for model II with 11 vertices (11 lights) and edges connecting  
incompatible vertices. 
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Figure 8: Graph G2. 
 
 

 
 
 

Figure 9: Complement G2’ of G2. 
 

 

 
 

Figure 10: Circular colouring of G2. 
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Figure 11: Traffic flow phases after chromatic circular graph. 

 
 
6 CONCLUSION 
 
In this paper we have chosen the two most common traffic junctions and showed in one 
of the two cases that the circular colouring method yields a more efficient solution than 
the usual colour minimization method. To be more specific, we have first reduced the traffic 
model by removing a redundant traffic light. Interestingly, such a traffic light reduction alone 
does not result in any traffic period reduction as shown by Proposition 4. On the other hand 
Proposition 2 also shows that the circular colouring method alone does not necessarily yield 
a better solution. Thus, it is made apparent in this paper that it is the combination of both 
methods that translates into more efficient traffic management.  

By virtue of simplicity, we have made our point clear without including long and tedious 
calculations. From a real world point of view, however, it is often necessary to consider 
additional factors. These factors inevitably lead to a more technical and computational 
analysis. We discuss here two such important factors and we conclude by remarking 
how we intend to resolve them.   

 In the first place, all roads at a traffic junction need not have an equal distribution 
of traffic load. A given road may be a lot busier than another although they meet at the same 
junction. As a result assigning equal time length to all traffic lights can lead to some 
undesirable traffic congestion.  

The second factor can be described as follows: We note that we have defined two traffic 
lights to be either incompatible or compatible. From this point of view, we decided to allow 
an overlapping green light interval only to compatible lights. However, we did not specify 
how much of an overlap time that can be allowed. The maximum being one, we have left 
the minimum overlapping time open to any. On the other hand, when two lights 
are incompatible, we have only considered the case that they are assigned a disjoint (non-
overlapping time) interval. However, in a real world scenario, the situation may 
not be that simple. For instance, in order to assure the safety of the traffic light system, 
there may be an additional requirement that two incompatible lights should not only have 
a non-overlapping green light time, but also that there is a certain time gap between the 
intervals. That is, one may not be given a green light immediately after the other’s green light 
turns red, but rather should wait a certain length of time before being allowed to proceed via 
a green light. There may also exist incompatible pairs of lights where such a restriction is not 
necessary. This leads to the notion of the “degree of incompatibility” between two 
incompatible lights. We can also analyze the dual problem of “degree of compatibility” 
problem between two compatible lights.   
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How do we approach such issues? There are certain generalizations of the circular colouring 
that are suitable to such a variety of real world problems. For the first factor that we discussed 
above, a type of circular colouring called “vertex-weighted” circular-colouring seems 
to be appropriate. The busier a given road is, the more weight we give to the light 
that corresponds to the busy road. In this manner, we obtain a graph which has labels 
on its vertices. The labels correspond to the weight that traffic light is given. Then, the vertex-
weighted circular colouring assigns a green light time interval to each traffic light 
proportional to the given weight of the specific vertex. In short, the vertex-weighted circular 
colouring addresses the problem of an unequal traffic distribution junction problem.     

For the second factor that we discussed above, a type of circular colouring called “edge-
weighted” circular-colouring seems to be the appropriate approach. The further apart we want 
two incompatible lights to have green light intervals, the more weight is given to the edge 
that is between the corresponding vertices in the graph. In this manner, we obtain a graph 
which has labels on its edges. The labels correspond to the “degree of incompatibility” 
between the traffic lights that are represented by the endpoints of the edge. Then, the edge-
weighted circular colouring assigns a green light time interval to each traffic light 
proportional to the given weight of the specific edge.  

Each of the edges and vertex-weighted circular-colouring minimizes the colouring 
number, and so it is presumed to give an optimal solution.  

We hope to study and present an extension of the current work in a forthcoming paper, 
by considering these two types of generalized circular-colourings and exhibit certain models 
where such methods prove to be more efficient than standard methods.  
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