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ABSTRACT: The article specifies a group of discrete optimization problems, such as location 
problems and tour problems, from the aspect of individual approaches (exact, heuristic, 
and metaheuristic) and seeks to explain all the approaches on specific problems. 
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1 INTRODUCTION 

In transportation and logistics systems (network problems) we distinguish two basic types 
of combinatorial problems. The first group consists of problems whose solution is a well-
defined set of items, such as the spatial distribution of facilities (service centres), terminals, 
warehouses, etc. 

The solution to the second group of combinatorial problems is defined as a sequence 
of visited nodes, or a sequence of customers served. A typical instance of the second group 
of problems is a VRP (vehicle routing problem). A travelling salesman is the simplest 
example of vehicle routing. 

1. Exact approach 
This approach allows an optimal solution to be found, if one exists, unless one can prove 
that there is no admissible solution to the problem. A great price is paid for precision –
especially in computation time - where an extensive problem is concerned. Moreover, 
it is difficult to estimate the time required for computation purely from the size 
of the problem. The approach can, for example, prove that it is not possible to construct 
a Hamiltonian circle. 

2. Simple heuristics 
This is used to find a good and admissible solution to a problem, or improve existing 
solutions. The heuristic approach, though, does not guarantee that an optimal solution will 
be found. Nevertheless, heuristics are very useful for practitioners who need to solve in real 
time problems of great sizes in order for their solutions to be used quickly (in real time). 

 Primal heuristic 
A primal heuristic works from an admissible solution to a problem, and tries to improve 
the solution through permitted operations that transform the current solution to another 
admissible solution with a lower objective function value. The new solution then becomes 
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the current solution for the next step in the improvement process. The primal heuristic ends 
once no further improvement can be achieved by way of the permitted operations. 

 Dual heuristic 
A dual heuristic works from an inadmissible solution and seeks to reduce the degree 
of inadmissibility by using permitted operations. Individual steps of the algorithm 
are performed with a view to minimising growth in the objective function value. The process 
continues until an admissible solution is found or until it is no longer possible to reduce 
the inadmissibility of the solution by means of permitted operations. 

Primal and dual heuristics can be combined (e.g., a primal heuristic provides the initial 
admissible solution for a dual heuristic). 

3. Metaheuristics 
This removes certain shortcomings of simple heuristics in that it does not become trapped 
in a local optimum. It jumps in the set of all admissible solutions and, at one moment, 
it explores several places in the set of admissible solutions (producing a sequential series 
of solutions), the objective function jumps; its gradient does not decrease, as in the case 
of simple heuristics. It is able to escape from a local optimum and find the global optimum. 
 
Approaches – methods for creating a sequence of solutions 
 
 approach based on exploring surroundings – Simulated Annealing, Tabu Search 

 approach based on the evolutionary process – Genetic Algorithms, Ant Colony 

 

We will look at individual approaches to solutions to specific problems. 

2 SOLUTION APPROACHES 

2.1 Solving a P-median problem exactly 

P-median problem (maximum distance problem) 
We have a given set of customers and some facilities (service centres). The customer 
is satisfied if its distance from any facility is less than or equal to the constant MAXD . 
This formulation of the problem corresponds to the real problem of decision-making, 
such as in the case of the placement of alarm sirens, public (municipal) loudspeakers, 
or location of healthcare centres. The optimality criterion is to cover all customers through 
a minimum number of localised facilities, depots, etc. A classic instance is for a set 
of customers Jj and a set of facilities Ii , where we define the sets: 
 

 Maxijj DdIiN  :             (1) 
 

these are sets of possible locations of facilities from which it is possible to satisfy the need 
of a j-th customer. 

The problem can easily be transformed into the known problem of covering the vertices 
of a graph (customers) using the minimum number of subsets from the given system 
of subsets. Note: a vertex is covered when its distance from a facility is MAXD . Individual 
subsets contain customers whose distance from the given facility does not exceed MAXD . 
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Instance of a specific problem: 
 
Given facts: DMAX, location of customers, set of candidates for the placement of facilities. 
We are looking for the minimum number of facilities that will cover the customers’ 
requirements. 

We compile the sets  MAXijj DdIiN  :  for  54321 ,,,,, vvvvvJJj  . The sets 
are expressed in a table where the rows are customers and the columns are facilities. The j-th 
row of the table corresponds to the j-th set jN , a one in the i-th row indicates that the facility 

iS  belongs to the set. 
 

Table 1:  Nj Initial admissible solution to the problem. 
 

 S1 S2 S3

v1 1   
v2 1 1  
v3 1  1 
v4 1 1  
v5   1 

 
 
Formulation of the LP general problem: 
 
We denote the elements of the table as a matrix   5,3

1, 


jiijaA          (2) 

Then we can formulate the model of the coverage problem: to minimize: 
Ii

iy       (3) 

Under the conditions:   1iij ya  for Jj ,  1,0iy  for Ii          (4) 

We fill the model with data from the example: minimise the function: 321 yyy        (5) 
Under the conditions: 

 1,0,1,1,1,1,1 32131211  iyyyyyyyyy    (6 – 10) 
 

We will examine the entire set of solutions, and then choose the one which is admissible 
and has the smallest objective function value.  

An admissible solution to the problem (5) – (10) is each triplet consisting of ones 
and zeros that satisfies the inequalities (6) – (10). It is obvious that the vector  1,1,1y  meets 
all the conditions and therefore belongs to the set of admissible solutions. Conversely, 
the triplets (0,1,1) and (1,1,0) fail to meet the conditions (6) and (10), and are therefore 
inadmissible solutions. 

The number of admissible solutions to the illustrative example (5) – (10) is small 
and contains only two solutions, so it is easy to determine the optimal solution that minimizes 
the function (5). The first solution gives us a criterion value equal to 3, the second solution 
then gives us the value 2. Therefore, the second solution, with an objective function value 
equal to 2, is the optimal solution to our problem. 

While this example is simple and easily solvable, we should not be misled into believing 
that for every problem it is easy to determine the admissibility of the solution and optimality. 
Quite the contrary, most real problems must be described by hundreds or thousands 
of variables and conditions, and the number of admissible solutions exceeds the number 1012. 
In such circumstances the use of the brute-force method, i.e., an examination of all admissible 
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solutions, is unrealistic and unmanageable in a reasonable space of time necessary 
for practical use. 

The above points lead us to the use of various computer-oriented methods, allowing 
the calculation of the solution to be completed within a reasonable time.  
 

2.2 Solving a P-median problem through a simple heuristic 

P-median problem (maximum distance problem) 
To illustrate a heuristic method we will use the example of a heuristic approach to solving 
the maximum distance problem already formulated above. 

The solution to the maximum distance problem is determined by the set of located 
facilities. A solution is considered admissible if each customer has at least one facility 
available within the distance DMAX. The default admissible solution can be obtained 
by placing a facility in all possible locations (the set of candidates for the depot, facility). 
Each solution can be represented by a list of located facilities. If we were to denote n number 
of facilities in the list, the following algorithm can describe the primal heuristic. 
 
STEP 0:  We put k = 1. 

STEP 1:  Examine, check each facility from the list of facilities currently valid. If removing 

a facility does not disturb admissibility, then remove that facility from the list. 

STEP 2:  If k < n, put k = k + 1 and go to STEP 1., else end the calculation 3. 

STEP 3:  End. 

 
If we were to apply this heuristic to our example with the default list  321 ,, SSS  

of facilities, n = 3, k = 1, we can easily determine that the facility S1 cannot be removed 
because the customer v1 cannot be satisfied by either facility S2 or S3. The facility S2 
is examined and we find that its removal does not violate the solution’s admissibility 
(all customers have least one facility available at a distance of MAXij Dd  ). The new solution 

is expressed by the set  31,SS , k = 2, k < n. By examining the facilities S1 and S3 we find 
that neither S1 nor S3 can be removed due to the requirement of v5. The algorithm ends 
with the resulting solution  31,SS . 

Even though in our simple demonstration example the heuristic enabled us to find 
the optimal solution, in general this does not hold true, since, particularly in the case 
of complex and extensive problems, heuristics do not guarantee optimal solutions. A primal 
heuristic, based on an admissible solution, can end the search process far from the optimum. 
Each primary heuristic merely ensures that one admissible solution is replaced by another, 
better solution. 
 

2.3 Solving the P-hub median problem through metaheuristics by using genetic algorithms 

Hub and Spoke principle in general 

 consolidation of small consignments at terminals (hubs) 
 transportation between terminals over long distances 
 distribution of consignments and delivery 
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Advantage: transportation between terminals (hubs) is cheaper and more frequent, drawback: 
extension of the route  
 
 

i

k l

j
 

 
Figure 1: Hub and Spoke Principle. 

 
 
Calculation of transportation costs – transportation costs between vertices i, j: 
 

ijklikijkl cccC              (11) 
 
cik – cost of pick-up part 
  – coefficient of savings in transportation between hubs (0< <1) 
ckl – cost of transportation between the nodes k, l 
cli – cost of the delivery part 
 
 
Variants of the problem: 
 
 capacity limited / unlimited hubs 
 known / unknown number of terminals 
 same / different transportation costs in individual directions 
 same / different α for individual routes between hubs 
 same / different amounts of transportation flows between nodes 
 simple / multiple allocation 
 
 
Simple location – served objects are firmly assigned to a specific hub 
 
 
 

 
 

Figure 2: Simple location. 
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Fitness function: 
 

k
k

kk
i j k k l k

jliljlikklikikij fhhchhchcb       







 min  

 (12) 
 

ph
k

kk  , 
k

ikh     Vi     

 
kkik hh    Vki  ,    1,0ikh  

 

ijb  – transportation volume 

ikc  – pick-up costs 

klc  – transportation costs between hubs 

ljc  – delivery costs 

 kkk fh  - costs of building depots  
 
Multiple location – objects can be assigned to attraction zones of several hubs 
 
 

 
 

Figure 3: Multiple location. 
 
 partial elimination of shipments in opposite directions 
 pick-up (delivery) for a given point is not always performed by the same hub, the choice 

of the two hubs depends on the specific relation i, j 
 
 
Fitness function: 
 

    
i j k

kkkijkl
k

ljklik
l

ij fhXcccb )(min   (13) 

 
ijb  – transportation volume  

ikc  – pick-up costs 

klc  – transportation costs between hubs 

ljc  – delivery costs 
 
 kkk fh  - costs of building depots  

VOLUME 5 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 2  2012

76



 

  

Solution using genetic algorithm 
 
 encoding the problem’s solution – chromosome 
 creating the initial population 
 selecting individuals for reproduction (selection) 
 reproduction – crossing, mutation => new generation 
 repeating iterations according to the requirements of the problem 
 
Instance of a specific problem: 
 
Find the optimal distribution of hubs on the network, where the number of a network’s 
vertices is n = 4, the number of located hubs is k = 2, =0.6, C is the matrix of costs for unit 
shipments and B is the matrix of the quantities transported between individual vertices. This 
is a simple location, where the objects served are firmly assigned to one of the hubs. 
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
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
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




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C  

 
 

c12=5

c13=2

c34=1

c14=3

c23=3

c24=2

 
 

Figure 4: Graphical representation of the situation. 
 
 
Options of encoding the problem’s solution – chromosome 
 
1)  n parts each having 2 segments: 
 is the given node a hub? (1-yes, 0-no) 
 is the node assigned to its nearest hub? (0-yes, 1-no) 
for example: (00100110) – hubs at vertices 2, 4; 1st in the attraction zone of the nearest hub, 
4th in the attraction zone of the farthest hub.  
(the specific network must be known) 
 
2)  n-component vector divided into 2 parts 
 hubs – the length k, directly written numbers of hubs  
 assignment of other vertices to hubs 
for example: (2421) – hubs at the vertices 2, 4; vertex 1 assigned to the 2nd hub in the order 
listed (i.e. to hub 4); vertex 3 assigned to the 1st hub in the order listed (i.e. to hub 2). 
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Encoding of the solution according to 1) 
 
 Example encoding of one solution: 

k = 1, 2; A (1)={1,3}; A (2)={2,4} 
 Solution: (10100000), hubs at the vertices 1, 2 

d(3,1)<d(3,2) d(4,2)<d(4,1)   
 
Calculation of the fitness function 
 
 according to the equation: (12) without costs for building the depot 
 
example: (10100000), A (1) = {1,3}, A (2) = {2,4}, the sum of all shipments between i 
and j; i, j1,2,3,4 
 
1. pick-up – non-zero for i = 3, 4 => shipments 3-1; 3-2; 3-4; 4-1; 4-2; 4-3 

2. shipment – non-zero: 1-2; 1-4; 2-1; 2-3; 3-2; 3-4; 4-1; 4-3 

3. delivery – non-zero for j = 3, 4 => shipments 1-3; 1-4; 2-3; 2-4; 3-2; 3-4 

 
Table 2: Calculation of the fitness function of an individual. 

 
hubs 1 2     
ass. vert’s 1, 3 2, 4     
i, j pick-up shipment delivery total value 
1 – 2 0 3 0 3 1 3 
1 – 3 0 0 2 2 2 4 
1 – 4 0 3 2 5 2 10 
2 – 1 0 3 0 3 1 3 
2 – 3 0 3 2 5 4 20 
2 – 4 0 0 2 2 5 10 
3 – 1 2 0 0 2 6 12 
3 – 2 2 3 0 5 1 5 
3 – 4 2 3 2 7 3 21 
4 – 1 2 3 0 5 3 15 
4 – 2 2 0 0 2 2 4 
4 – 3 2 3 2 7 1 7 
Total      114 

 
The value of the fitness function of an individual is 114. 
 
Initial population – 8 randomly selected individuals. 
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Table 3: Initial population. 
 

number configuration of the individual fitness value 
1 (10100000) 114,0 
2 (00101001) 90,8 
3 (01011010) 99,6 
4 (10000010) 72,0 
5 (10100101) 146,0 
6 (00100010) 78,8 
7 (10001000) 78,0 
8 (10010010) 132,0 

 
Selection – selection of individuals for reproduction using weighted roulette. 
 
 the problem of genetic algorithms is that they work with a utility maximisation function, 

therefore we convert the utility fci is according to the equation 
 

 
worstbest

avgF
f i

i 


1  (14) 

 
Fi  – the value of fitness function for the given solution 
avg – average fitness value fce in the generation 
best   – the best fitness value fce in the generation 
worst   – the worst fitness value fce in the generation 

 
 probability of the individual passing into the next generation according to the equation 
 

 




n

i
i

i
i

f

f
P

1  (15)

 

Table 4: Selection. 
 
numb
er 

configuration 
of the individual 

fitness value  converted 
fitness   

probability 
of passing  
 

1 (10100000) 114.0 0.830 10.4 % 
2 (00101001) 90.8 1.143 14.3 % 
3 (01011010) 99.6 1.024 12.8 % 
4 (10000010) 72.0 1.397 17.5 % 
5 (10100101) 146.0 0.397 5.0 % 
6 (00100010) 78.8 1.305 16.3 % 
7 (10001000) 78.0 1.316 16.5 % 
8 (10010010) 132.0 0.586 7.3 % 
   101.4 1.000  

 
Using weighted roulette, the following pass into the next generation : f4, f2, f6, f3, f7, f1, f4, f8 
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Reproduction – Crossing 
  
 creation of a combination of the genetic material of 2 individuals with the hope of gaining 

a better individual 
 algorithm: 

 
1. browse the genetic code of individuals from right to left and look for the position i at 

which the 1st individual in the 1st gene segment has 1 and the second has 0. If found, 
replace the entire genes of both individuals at the position 

2. concurrently browse the genetic code of individuals from left to right and search for 
the position j, at which the 1st individual in the 1st gene segment has 0 and the other 
has 1. If you find it, replace the entire genes of both individuals at the position. 

 both processes run until achieving  ij   
 
Probability of crossing: 75,0cp , genes f3´ and f4´ proceed without crossing 
 

Table 5: Crossing. 

 original result of the crossing 
f1´=f4 (10000001) (10100001) 
f2´=f2 (00101001) (00001010) 
f3´=f6 (00100010) (00100010) 
f4´=f3 (01011010) (01011010) 
f5´=f7 (10001000) (10100000) 
f6´=f1 (10100000) (10001000) 
f7´=f4 (10000010) (10000010) 
f8´=f8 (10010010) (10010010) 

 
 
Reproduction – mutation 
 
 operator’s purpose: to produce as yet unexplored or lost genetic material 

 prevents premature convergence to a local optimum 

 alteration of both segments with low probability 

 1st segment: 2 substitutions in the generation (pm1 = 2/(8*4) = 6.3%) 
 2nd segment: 1 change in the generation (pm2 = 1/16= 6.3%) 

 in the case of the mutation of the 1st segment it is necessary to keep in mind the given 

number k, and, in the case of the 2nd segment, the occurrence of the nonsense positions of 

the type (…11…) 

 mutation of the 1st segment 

 6th individual – substitution of the 1st position for the 2nd 
 (10001000)  (00101000) 
 5th individual – substitution of the 1st position for the 4th 
 (10100000)  (00100010) 
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 mutation of the 2nd segment 

 3rd individual – substitution at the 3rd position 
 (00100010)  (00100110) 

 
The minimum of the function utility value after the first iteration is 67.6; this corresponds 
to the minimum of the 2nd and 3rd iteration and also to the result of the exact solution. 
 
 
Optimal solution: hubs at vertices 3 and 4. Vertex 1 is served from hub 3, and vertex 
2 from hub 4. 

 
 

Table 6: Mutation, result of the first iteration. 
 

 genetic code fitness value
f1 (10100001) 118.0 
f2 (00001010) 67.6 
f3 (00100110) 121.2 
f4 (01011010) 99.6 
f5 (00100010) 78.8 
f6 (00101000) 71.2 
f7 (10000010) 72.0 
f8 (10010010) 132.0 

3 CONCLUSION 

Discrete optimization problems can generally be solved in different ways, ranging from exact, 
through simple heuristic methods, to metaheuristics. Simple heuristic methods, however, 
do not provide any guarantee of achieving an optimal solution, nor even an admissible 
solution. In general they are characterized by passing from one admissible or inadmissible 
solution to the next one, and by a local criterion with the help of which the resulting solution 
is selected from a set of possible subsequent solutions. Metaheuristics are heuristic 
approaches that under certain circumstances make it possible to depart from a local minimum, 
and, through a sequence of iterative steps, move into other parts of the set of admissible 
solutions where there is hope of finding a solution with a better objective function value 
than that of the local minimum. As with other heuristic methods, metaheuristics do not 
guarantee finding an optimal solution to the problem. The metaheuristic shown above using 
genetic algorithms does not create a sequence of solutions, but works concurrently 
with an entire set of solutions called a population. The work of a genetic algorithm begins 
with the creation of an initial population, the genes are then paired and crossed on the basis 
of benefit coefficients, and the newly-created individuals are mutated. Selection is made 
in the newly-created population, the best solution yet found is updated, and the whole process 
is repeated until either of the conditions for ending the optimization process is satisfied. 
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