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ABSTRACT: Mathematical modeling is an inevitable part of system analysis and design 
in science and engineering. When a parametric mathematical description is used, the issue 
of the parameter estimation accuracy arises. Models with uncertain parameter values can be 
evaluated using various methods and computer simulation is among the most popular 
in the engineering community. Nevertheless, an exhaustive numerical analysis of models 
with numerous uncertain parameters requires a substantial computational effort. The purpose 
of this paper is to show how the computation can be accelerated using a parallel configuration 
of graphics processing units (GPU). The assessment of the computational speedup 
is illustrated with a case study. The case study is a simulation of Highway Capacity Manual 
2000 Queue Model with selected uncertain parameters. The computational results show 
that the parallel computation solution is efficient for a larger amount of samples 
when the initial and communication overhead of parallel computation becomes a sufficiently 
small part of the whole process. 
 
KEY WORDS:  Graphics processing unit, GPU, Monte Carlo simulation, computer 

simulation, modeling. 
 

1 INTRODUCTION 

Computer simulation is recognized as one of the most frequently used tools in system analysis 
and design in science and engineering. Technology development enables increasingly 
sophisticated mathematical models to be simulated in less and less time. On the other hand 
it is also true that the increasing capability of hardware and software does not prevent 
scientists and engineers to reach the computational limits of the hardware. 

The purpose of this paper is to show how computation with a personal computer can be 
accelerated using a parallel configuration of graphics processing units (GPU). This is done 
from the user’s point-of-view to test the usability of the compared computational platforms 
for simulation. 

The change of computational configuration is validated and illustrated with the case 
of a Monte Carlo simulation of a dynamic system model from the field of transportation 
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science. Other such applications are increasingly popular, e.g., Raina et al. (2009), Catanzaro 
et al. (2008). 

Mathematical models are inevitable in science and engineering. When parametric 
mathematical description is used, the issue of parameter estimation accuracy arises. Models 
with uncertain parameter values can be evaluated with various methods and computer 
simulation is among the most popular in the engineering community. Nevertheless, 
an exhaustive numerical analysis of models with numerous uncertain parameters requires 
a substantial computational effort. An example of such an exhaustive numerical analysis 
is the Monte Carlo simulation of dynamic systems with uncertain parameters, see e.g., 
Ray and Stengel (1993), Calafiore and Dabbene (2006). 

The structure of the paper is as follows: the next section describes the hardware used 
and the implementation of simulation software for graphics processing units. Section 3 
describes the selected case study and the comparison of computational time for selected 
hardware configurations. Conclusions are stated at the end. 

2 COMPUTATIONAL ACCELERATION WITH GPU 

While “standard” CPUs continue to provide users with more and more computing power 
nowadays (Shen and Lipasti, 2005), many computer scientists migrate towards general-
processing GPU (GPGPU) applications (Kirk and Hwu, 2010), using graphics card processors 
as parallel accelerators for memory-dense, floating-point intensive applications. GPGPU 
accelerators are becoming the tool of choice in many computationally-bound research tasks 
such as bioinformatics or numerical modeling and simulation, and also in traffic simulation 
(Strippgen and Nagel, 2009). 

The concept of a GPGPU processor evolved from the needs of 3D-graphics-intensive 
applications. This need dictated the design of the processor in such a way that more transistors 
were dedicated to the data processing rather than to control and data caching, as in a regular 
CPU. Subsequently, the processor was designed to be able to execute a data-parallel algorithm 
on a stream of data; consequently, the GPGPU processors are sometimes called “stream 
processors”. The currently dominant architectures for GPGPU computing are the nVidia 
CUDA (nVidia, 2011) and the AMD APP (formerly ATI Stream) (AMD, 2011). Graphics 
processing units are currently a low-cost, high performance computing alternative. 
With their intrinsic parallel structure they allow for significant computational increase 
in speed in comparison to the single processor architecture. 

In order to show how the computation problem of Monte Carlo numerical analysis 
of a traffic model using the Matlab package for numerical computation (MathWorks, 2010) 
can benefit from the use of currently available GPGPU hardware, we describe the computing 
architectures that were used in our tests. The basic characteristic of the tested hardware 
configurations is given in Table 1. 

For demonstration purposes, two different hardware configurations and two different 
software configurations will be used: 
 
 Multiple-core CPU (CPU). A standard PC was used, equipped with a four-core Intel 

i5/750 processor with 4MB of cache memory (1MB per core). The Matlab interpreter will 
use its built-in multiple-core capabilities, resulting in most of the elementary matrix 
operations being computed in parallel on all four processor cores.  

 
 Multiple-core GPU (GPU). The same PC platform as in the tests above will be used, 

but the most computationally intensive parts of the code, namely the Monte-Carlo 
simulation of the HCM model, will be offloaded to the GPU. We will use the NVIDIA 
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GeForce GTX 275 GPU, which includes 30 streaming multiprocessors with 8 cores each 
(in total 240 processor cores). Every processor may use up to 16 kB of fast shared 
memory similar to the cache memory of a traditional CPU. 

 
- The first software configuration will use the GPU-accelerated Jacket library 

for Matlab (AccelerEyes, 2011). The library allows for almost seamless 
conversion of an existing Matlab code into a code that runs on a GPU.  

 
- In order to assess the efficiency of the Jacket library, we will also use manually 

programmed GPU code in the form of a MEX file (an external routine, directly 
callable from the Matlab code). 

 
We have written a small benchmark program based on Matlab, which tests the execution 

times of a typical HCM simulation cycle. The program gathers computation times in relation 
to the number of samples used in the simulation. This approach provides us with a view 
on the impact that different architectures have on the computation time from the user’s 
perspective.  

 
Table 1:  Parameters of our hardware configurations: the used GPU is the first-generation 

GPU with double precision support and, as such, its double precision performance 
is 8 times lower than that of a single precision computation. 

 
 Multiple-core CPU Multiple-core GPU 
Type i5/750 GTX275 
Cores 4 30×8 (240) 
Cache memory 8MB 240×16kB (~4MB) 
Total memory 4096MB 896MB 
Memory bandwidth 17 GB/s 127 GB/s 
GFLOPS (float) 42.56 1010 
GFLOPS (double) 42.56 124 

 
 

The NVIDIA GPGPUs come with the CUDA API (Garland et al., 2008), which is used 
to directly program the GPU hardware. While Jacket makes the use of CUDA (and other third 
party libraries) internally, for the assessment of Jacket efficiency we had to implement 
two custom GPU programs (kernels). 

Although it is relatively easy to manually setup and perform basic mathematical 
operations on a GPU, it quickly becomes more complex when dealing with more demanding 
numerical problems. Additionally, due to the GPGPU architecture, special care must be taken 
when performing memory operations: 

 
 due to relatively slow memory transfer, data transfers between the host system 

and the GPU device shall be as few as possible, and shall be asynchronous if possible, 
 
 improper kernel code design, with respect to the operation on different memory types 

(main GPU memory, shared memory, constant memory, texture memory) and ignoring 
memory access coalescing on the GPU device, can cause a significant performance loss, 

 
 shared memory in a block is organized into banks and accessing elements 

not consecutively will cause a bank conflict, 
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 shared memory and processor register space is scarce, and care should be taken to limit 

the number of kernel variables to as low as possible; this issue is critical, even more 
with double precision arithmetic, as a double precision number occupies two register 
units. 

3 CASE STUDY 

As an example of a mathematical model that will be used for Monte Carlo analysis 
the Highway Capacity Manual 2000 Queue Model for back of queue presented 
in the Highway Capacity Manual (2000) will be considered. The model is composed 
of two queue components, 
 

1,21,11   kkk QQQ , (1) 
 
where Q1,k+1 represents an average back of queue for uniform arrival distribution 
that is corrected by a multiplicative correction factor accounting for queue progression, 
and Q2,k+1 is an additive correction term accounting for randomness and uncertainty 
in the queue development process. 

Under the assumption that the cycle length C is equal to the period of data collection T∆, 
the original model can be reformulated as 
 

,
),0.1min(1

)1(
3600PF

,L

,L

,21,1
kk

k
k

kk zX

z
Cv

Q



  

(2) 
 
where PF2,k is an multiplicative correction factor adjusting the queue length for the effects 
of progression, zk = gk/C is the relative green signal length in the k-th cycle corresponding 
to the absolute green length gk, and XL,k = vL,k/cL,k is the lane saturation ratio computed 
from the current traffic volume vL,k and the lane capacity cL,k. The correction factor 
is given by 
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is a flow ratio of the approach expressing its degree of total saturation for the current 
saturation flow sL,k and 
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is the platoon ratio of the approach concerned. Here, the variable P specifies the proportion 
of vehicles arriving during the green signal. 
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The second term of (1) attempts to correct possible errors in (2), caused by uncertain 
and random factors, such as the previous queue length, or a non-uniform arrival distribution. 
Assuming approximately constant flows during the data collection period T∆ it is defined as 
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The second-term adjustment factor kB,k accounts for early arrivals and for actuated signals 
and is defined as 
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The upstream filtering factor Ik in this equation expresses the influence of saturation ratio Xu,k 
at the upstream intersection on platoon arrivals at the modeled intersection. In our case 
it is computed using formula given by the Highway Capacity Manual (2000) as 
 

.1 68.2
,u kk XI   (5) 

 
After obtaining the average back of queue by evaluating (1), a percentile back of queue 

factor has to be applied to the predicted value to get a more conservative prediction 
of the queue length. The percentile correction factor fB% is defined as 
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where parameters p1, p2 and p3 are usually determined by the desired percentile (Highway 
Capacity Manual, 2000). The final queue length Q% incorporating the percentile correction 
is then 
 

).( 1B%11%,   kkk QfQQ  (7) 
 
In our case parameters p1, p2 and p3 are uncertain parameters for which we have only interval 
values. These values are p1 [1.1, 1.5],  p2  [0.2, 0.4], p3  [25, 35]. 

The Monte Carlo simulation with 106 simulation runs where parameter values 
were uniformly distributed within their intervals was run within Matlab on both previously 
mentioned configurations. Simulation results are depicted in Figure 1. 

3.1 User effort 

As we would like to compare the results not only in terms of acceleration, but also 
in the context of user effort that went into particular variants of the tested software, we will 
now summarize the latter. 
 
 Multiple-core computer (CPU). In the case of a recent Matlab version, the Matlab 

computing kernel automatically uses a multithreaded version of certain functions 
and operations in case that the size of operands exceeds a certain limit. 
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 Personal computer with GPU using Jacket (Jacket). The transition from pure Matlab 
to “Jacketized” code has been very swift. The original Matlab function that represents 
the model had to undergo just minor changes and has been compiled by Jacket as a kernel 
code. The other change was changing the model simulation to run element-by-element 
(rather than vectorized) in a loop using a special GPU optimized loop construct provided 
by Jacket. The total effort was a few hours for a person fairly familiar with the Matlab 
environment. 

 
 Personal computer with manually programmed GPU (GPU). The simulation procedure 

has been rewritten as a MEX file, manually implementing the model as a GPU kernel. 
In addition, as Jacket provides accelerated implementations of functions for finding mean 
value, maxima and minima of a data vector, these three operations have been 
implemented as custom kernels too. The current code snapshot represents a few days 
of programming and debugging effort for an experienced programmer. Most of the effort 
probably went into debugging the model code due to its high register space requirements. 

3.2 Computational effort 

The comparison of computational times is illustrated with a case study of a Monte Carlo 
simulation using from 100000 to 6400000 samples of a HCM model with changing 
parameters p1, p2 and p3. The computational effort assessment is given in Figure 2. 

We can see that for a low number of samples the overhead of GPU computation severely 
affects the computation – the time needed  to set up the GPU hardware and to transfer the data 
from the host computer to the GPU severely affects the performance of the GPU-accelerated 
code. 

Once reaching above approximately a hundred thousand samples, the full advantage 
of the GPU capabilities starts to be visible: The “Jacketized” code, despite the minimum effort 
necessary for the changes of the original HCM model, reaches a speedup of a factor of more 
then 15, and the manually programmed version of the HCM model outperforms 
the CPU version by factor of more than 25. 
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Figure 1: Response of the queue-length model with stochastic parameters p1, p2 and p3. 
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Figure 2:  Computation times of the model Monte Carlo simulation versus the number 

of simulation runs for different hardware configurations (left). Relative speedups 
of a simulation run on a personal computer utilizing graphics processors, 
with respect to the multi-core computation (right). 

4 CONCLUSIONS 

Computer simulation is a flexible and frequent tool that can be used for analysis and design 
in science and engineering. When the amount of simulation runs is increased – as it is the case 
of the Monte Carlo simulation – and the models are complex, the drawback is an increasing 
computational time. This paper provides a description of the implementation of the Monte 
Carlo simulation on graphics processor units and a comparison of computational-time 
with a standard multi-core personal computer on a dynamic system simulation case-study. 
The assessment was performed from the user’s point-of-view to test the usability 
of the compared computational platforms for simulation. 

The assessment of the simulation algorithm implementation on nVidia GTX275 graphics 
processing unit for the Highway Capacity Manual 2000 Queue Model revealed that even 
a straightforward acceleration using a third party library for GPU computation (Jacket) can 
increase the simulation speed by a factor of more than 15 and that a speedup of more 
than 25 can be reached by manually programming the GPU hardware. It has to be noted 
that the GPU used is currently a middle-class device and that its computing capabilities 
in double precision floating point arithmetic are inferior to state-of-the-art devices. 

As hardware capabilities are improving constantly and research on efficient algorithms 
is on-going the presented assessment might not be of long-term value. However, it offers 
a state-of-the-art comparison of an affordable hardware configuration that might help 
to circumvent the computational issue in intermediate time before more efficient algorithms 
or better technologies arise. With this it fulfills the purpose for which it was intended. 
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