

Stochastic Analysis of a Queue Length Model Using a Graphics
Processing Unit

J. Přikryl*
Faculty of Transportation Sciences, Czech University of Technology, Prague, Czech Republic
Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic
* Corresponding author: prikryl@utia.cas.cz

J. Kocijan
Jožef Stefan Institute, Ljubljana, Slovenia
Centre for Systems and Information Technologies, University of Nova Gorica, Slovenia

DOI: 10.2478/v10158-012-0007-2

ABSTRACT: Mathematical modeling is an inevitable part of system analysis and design
in science and engineering. When a parametric mathematical description is used, the issue
of the parameter estimation accuracy arises. Models with uncertain parameter values can be
evaluated using various methods and computer simulation is among the most popular
in the engineering community. Nevertheless, an exhaustive numerical analysis of models
with numerous uncertain parameters requires a substantial computational effort. The purpose
of this paper is to show how the computation can be accelerated using a parallel configuration
of graphics processing units (GPU). The assessment of the computational speedup
is illustrated with a case study. The case study is a simulation of Highway Capacity Manual
2000 Queue Model with selected uncertain parameters. The computational results show
that the parallel computation solution is efficient for a larger amount of samples
when the initial and communication overhead of parallel computation becomes a sufficiently
small part of the whole process.

KEY WORDS: Graphics processing unit, GPU, Monte Carlo simulation, computer

simulation, modeling.

1 INTRODUCTION

Computer simulation is recognized as one of the most frequently used tools in system analysis
and design in science and engineering. Technology development enables increasingly
sophisticated mathematical models to be simulated in less and less time. On the other hand
it is also true that the increasing capability of hardware and software does not prevent
scientists and engineers to reach the computational limits of the hardware.

The purpose of this paper is to show how computation with a personal computer can be
accelerated using a parallel configuration of graphics processing units (GPU). This is done
from the user’s point-of-view to test the usability of the compared computational platforms
for simulation.

The change of computational configuration is validated and illustrated with the case
of a Monte Carlo simulation of a dynamic system model from the field of transportation

VOLUME 5 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 2 2012

55

science. Other such applications are increasingly popular, e.g., Raina et al. (2009), Catanzaro
et al. (2008).

Mathematical models are inevitable in science and engineering. When parametric
mathematical description is used, the issue of parameter estimation accuracy arises. Models
with uncertain parameter values can be evaluated with various methods and computer
simulation is among the most popular in the engineering community. Nevertheless,
an exhaustive numerical analysis of models with numerous uncertain parameters requires
a substantial computational effort. An example of such an exhaustive numerical analysis
is the Monte Carlo simulation of dynamic systems with uncertain parameters, see e.g.,
Ray and Stengel (1993), Calafiore and Dabbene (2006).

The structure of the paper is as follows: the next section describes the hardware used
and the implementation of simulation software for graphics processing units. Section 3
describes the selected case study and the comparison of computational time for selected
hardware configurations. Conclusions are stated at the end.

2 COMPUTATIONAL ACCELERATION WITH GPU

While “standard” CPUs continue to provide users with more and more computing power
nowadays (Shen and Lipasti, 2005), many computer scientists migrate towards general-
processing GPU (GPGPU) applications (Kirk and Hwu, 2010), using graphics card processors
as parallel accelerators for memory-dense, floating-point intensive applications. GPGPU
accelerators are becoming the tool of choice in many computationally-bound research tasks
such as bioinformatics or numerical modeling and simulation, and also in traffic simulation
(Strippgen and Nagel, 2009).

The concept of a GPGPU processor evolved from the needs of 3D-graphics-intensive
applications. This need dictated the design of the processor in such a way that more transistors
were dedicated to the data processing rather than to control and data caching, as in a regular
CPU. Subsequently, the processor was designed to be able to execute a data-parallel algorithm
on a stream of data; consequently, the GPGPU processors are sometimes called “stream
processors”. The currently dominant architectures for GPGPU computing are the nVidia
CUDA (nVidia, 2011) and the AMD APP (formerly ATI Stream) (AMD, 2011). Graphics
processing units are currently a low-cost, high performance computing alternative.
With their intrinsic parallel structure they allow for significant computational increase
in speed in comparison to the single processor architecture.

In order to show how the computation problem of Monte Carlo numerical analysis
of a traffic model using the Matlab package for numerical computation (MathWorks, 2010)
can benefit from the use of currently available GPGPU hardware, we describe the computing
architectures that were used in our tests. The basic characteristic of the tested hardware
configurations is given in Table 1.

For demonstration purposes, two different hardware configurations and two different
software configurations will be used:

 Multiple-core CPU (CPU). A standard PC was used, equipped with a four-core Intel

i5/750 processor with 4MB of cache memory (1MB per core). The Matlab interpreter will
use its built-in multiple-core capabilities, resulting in most of the elementary matrix
operations being computed in parallel on all four processor cores.

 Multiple-core GPU (GPU). The same PC platform as in the tests above will be used,

but the most computationally intensive parts of the code, namely the Monte-Carlo
simulation of the HCM model, will be offloaded to the GPU. We will use the NVIDIA

VOLUME 5 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 2 2012

56

GeForce GTX 275 GPU, which includes 30 streaming multiprocessors with 8 cores each
(in total 240 processor cores). Every processor may use up to 16 kB of fast shared
memory similar to the cache memory of a traditional CPU.

- The first software configuration will use the GPU-accelerated Jacket library

for Matlab (AccelerEyes, 2011). The library allows for almost seamless
conversion of an existing Matlab code into a code that runs on a GPU.

- In order to assess the efficiency of the Jacket library, we will also use manually

programmed GPU code in the form of a MEX file (an external routine, directly
callable from the Matlab code).

We have written a small benchmark program based on Matlab, which tests the execution

times of a typical HCM simulation cycle. The program gathers computation times in relation
to the number of samples used in the simulation. This approach provides us with a view
on the impact that different architectures have on the computation time from the user’s
perspective.

Table 1: Parameters of our hardware configurations: the used GPU is the first-generation

GPU with double precision support and, as such, its double precision performance
is 8 times lower than that of a single precision computation.

 Multiple-core CPU Multiple-core GPU
Type i5/750 GTX275
Cores 4 30×8 (240)
Cache memory 8MB 240×16kB (~4MB)
Total memory 4096MB 896MB
Memory bandwidth 17 GB/s 127 GB/s
GFLOPS (float) 42.56 1010
GFLOPS (double) 42.56 124

The NVIDIA GPGPUs come with the CUDA API (Garland et al., 2008), which is used
to directly program the GPU hardware. While Jacket makes the use of CUDA (and other third
party libraries) internally, for the assessment of Jacket efficiency we had to implement
two custom GPU programs (kernels).

Although it is relatively easy to manually setup and perform basic mathematical
operations on a GPU, it quickly becomes more complex when dealing with more demanding
numerical problems. Additionally, due to the GPGPU architecture, special care must be taken
when performing memory operations:

 due to relatively slow memory transfer, data transfers between the host system

and the GPU device shall be as few as possible, and shall be asynchronous if possible,

 improper kernel code design, with respect to the operation on different memory types

(main GPU memory, shared memory, constant memory, texture memory) and ignoring
memory access coalescing on the GPU device, can cause a significant performance loss,

 shared memory in a block is organized into banks and accessing elements

not consecutively will cause a bank conflict,

VOLUME 5 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 2 2012

57

 shared memory and processor register space is scarce, and care should be taken to limit

the number of kernel variables to as low as possible; this issue is critical, even more
with double precision arithmetic, as a double precision number occupies two register
units.

3 CASE STUDY

As an example of a mathematical model that will be used for Monte Carlo analysis
the Highway Capacity Manual 2000 Queue Model for back of queue presented
in the Highway Capacity Manual (2000) will be considered. The model is composed
of two queue components,

1,21,11   kkk QQQ , (1)

where Q1,k+1 represents an average back of queue for uniform arrival distribution
that is corrected by a multiplicative correction factor accounting for queue progression,
and Q2,k+1 is an additive correction term accounting for randomness and uncertainty
in the queue development process.

Under the assumption that the cycle length C is equal to the period of data collection T∆,
the original model can be reformulated as

,
),0.1min(1

)1(
3600PF

,L

,L

,21,1
kk

k
k

kk zX

z
Cv

Q





(2)

where PF2,k is an multiplicative correction factor adjusting the queue length for the effects
of progression, zk = gk/C is the relative green signal length in the k-th cycle corresponding
to the absolute green length gk, and XL,k = vL,k/cL,k is the lane saturation ratio computed
from the current traffic volume vL,k and the lane capacity cL,k. The correction factor
is given by

,
)1)(1(
)1)(1(

PF
,P

,P
,2

kkk

kkk
k yRz

yzR






where

k

k
k s

v
y

,L

,L

is a flow ratio of the approach expressing its degree of total saturation for the current
saturation flow sL,k and

k
k z

P
R ,P

is the platoon ratio of the approach concerned. Here, the variable P specifies the proportion
of vehicles arriving during the green signal.

VOLUME 5 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 2 2012

58

The second term of (1) attempts to correct possible errors in (2), caused by uncertain
and random factors, such as the previous queue length, or a non-uniform arrival distribution.
Assuming approximately constant flows during the data collection period T∆ it is defined as

.
)(

168
)1(1

4 2
,L

,B

,L

,B2
,L,L

,L
1,2 























 Tc

Qk

Tc

xk
XX

Tc
Q

k

kk

k

kk
kk

k
k

(3)

The second-term adjustment factor kB,k accounts for early arrivals and for actuated signals
and is defined as

.
3600

01.0
6.0

,L
,B 







 
 kk

kk

gs
Ik

(4)

The upstream filtering factor Ik in this equation expresses the influence of saturation ratio Xu,k
at the upstream intersection on platoon arrivals at the modeled intersection. In our case
it is computed using formula given by the Highway Capacity Manual (2000) as

.1 68.2
,u kk XI  (5)

After obtaining the average back of queue by evaluating (1), a percentile back of queue

factor has to be applied to the predicted value to get a more conservative prediction
of the queue length. The percentile correction factor fB% is defined as

3
21B%)(p

Q

eppQf


 (6)

where parameters p1, p2 and p3 are usually determined by the desired percentile (Highway
Capacity Manual, 2000). The final queue length Q% incorporating the percentile correction
is then

).(1B%11%,   kkk QfQQ (7)

In our case parameters p1, p2 and p3 are uncertain parameters for which we have only interval
values. These values are p1 [1.1, 1.5], p2  [0.2, 0.4], p3  [25, 35].

The Monte Carlo simulation with 106 simulation runs where parameter values
were uniformly distributed within their intervals was run within Matlab on both previously
mentioned configurations. Simulation results are depicted in Figure 1.

3.1 User effort

As we would like to compare the results not only in terms of acceleration, but also
in the context of user effort that went into particular variants of the tested software, we will
now summarize the latter.

 Multiple-core computer (CPU). In the case of a recent Matlab version, the Matlab

computing kernel automatically uses a multithreaded version of certain functions
and operations in case that the size of operands exceeds a certain limit.

VOLUME 5 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 2 2012

59

 Personal computer with GPU using Jacket (Jacket). The transition from pure Matlab
to “Jacketized” code has been very swift. The original Matlab function that represents
the model had to undergo just minor changes and has been compiled by Jacket as a kernel
code. The other change was changing the model simulation to run element-by-element
(rather than vectorized) in a loop using a special GPU optimized loop construct provided
by Jacket. The total effort was a few hours for a person fairly familiar with the Matlab
environment.

 Personal computer with manually programmed GPU (GPU). The simulation procedure

has been rewritten as a MEX file, manually implementing the model as a GPU kernel.
In addition, as Jacket provides accelerated implementations of functions for finding mean
value, maxima and minima of a data vector, these three operations have been
implemented as custom kernels too. The current code snapshot represents a few days
of programming and debugging effort for an experienced programmer. Most of the effort
probably went into debugging the model code due to its high register space requirements.

3.2 Computational effort

The comparison of computational times is illustrated with a case study of a Monte Carlo
simulation using from 100000 to 6400000 samples of a HCM model with changing
parameters p1, p2 and p3. The computational effort assessment is given in Figure 2.

We can see that for a low number of samples the overhead of GPU computation severely
affects the computation – the time needed to set up the GPU hardware and to transfer the data
from the host computer to the GPU severely affects the performance of the GPU-accelerated
code.

Once reaching above approximately a hundred thousand samples, the full advantage
of the GPU capabilities starts to be visible: The “Jacketized” code, despite the minimum effort
necessary for the changes of the original HCM model, reaches a speedup of a factor of more
then 15, and the manually programmed version of the HCM model outperforms
the CPU version by factor of more than 25.

550 560 570 580 590 600 610 620 630 640 650
5

10

15

20

25

30

35

40

45

Step number

M
od

el
le

d
qu

eu
e

le
ng

th
 [v

eh
]

Figure 1: Response of the queue-length model with stochastic parameters p1, p2 and p3.

VOLUME 5 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 2 2012

60

0 1 2 3 4 5 6

x 10
6

10
1

10
2

10
3

Number of samples

C
om

pu
ta

tio
na

l t
im

e
[s

]

CPU

Jacket

GPU

0 1 2 3 4 5 6

x 10
6

0

5

10

15

20

25

Number of samples

S
pe

ed
up

 fa
ct

or
 [-

]

Jacket/CPU

GPU/CPU

Figure 2: Computation times of the model Monte Carlo simulation versus the number

of simulation runs for different hardware configurations (left). Relative speedups
of a simulation run on a personal computer utilizing graphics processors,
with respect to the multi-core computation (right).

4 CONCLUSIONS

Computer simulation is a flexible and frequent tool that can be used for analysis and design
in science and engineering. When the amount of simulation runs is increased – as it is the case
of the Monte Carlo simulation – and the models are complex, the drawback is an increasing
computational time. This paper provides a description of the implementation of the Monte
Carlo simulation on graphics processor units and a comparison of computational-time
with a standard multi-core personal computer on a dynamic system simulation case-study.
The assessment was performed from the user’s point-of-view to test the usability
of the compared computational platforms for simulation.

The assessment of the simulation algorithm implementation on nVidia GTX275 graphics
processing unit for the Highway Capacity Manual 2000 Queue Model revealed that even
a straightforward acceleration using a third party library for GPU computation (Jacket) can
increase the simulation speed by a factor of more than 15 and that a speedup of more
than 25 can be reached by manually programming the GPU hardware. It has to be noted
that the GPU used is currently a middle-class device and that its computing capabilities
in double precision floating point arithmetic are inferior to state-of-the-art devices.

As hardware capabilities are improving constantly and research on efficient algorithms
is on-going the presented assessment might not be of long-term value. However, it offers
a state-of-the-art comparison of an affordable hardware configuration that might help
to circumvent the computational issue in intermediate time before more efficient algorithms
or better technologies arise. With this it fulfills the purpose for which it was intended.

ACKNOWLEDGMENTS

This work has been supported by the Slovenian Research Agency, grants Nos. P2-0001
and J2-2099, and by a bilateral project between Slovenia and Czech Republic ‘System
Identification Based on Gaussian Process Model for Traffic Control Applications’
(MEB091015).

VOLUME 5 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 2 2012

61

REFERENCES

AccelerEyes, 2011. Jacket User Guide Version 1.8.1. Atlanta, GA (USA): AccelerEyes.

AMD, 2011. AMD Accelerated Parallel Processing OpenCL Programming Guide.
Sunnyvale, CA (USA): Advanced Micro Devices, Inc.

Calafiore, G., Dabbene, F. (Eds.), 2006. Probabilistic and Randomized Methods for Design
under Uncertainty. London: Springer. ISBN 978-1846280948.

Catanzaro, B., Sundaram, N., Keutzer, K., 2008. Fast support vector machine training
and classification on graphics processors. In Proceedings of 25th Annual International
conference on Machine Learning. New York: Omnipress, pp. 104 – 111.

Garland, M., Grand, S. L., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips, E.,
Zhang, Y., Volkov, V., 2008. Parallel computing experiences with CUDA. Micro, IEEE,
vol. 28, no. 4, pp. 13 – 27. ISSN 0272-1732.

Highway Capacity Manual 2000. Washington (USA): Transportation Research Board,
Federal Highway Administration.

Matlab 2010b, 2010. Natick, MA (USA): MathWorks Ltd.

NVIDIA, 2011. CUDA Programming Guide Version 4.0. Santa Clara, CA: NVIDIA
Corporation.

Kirk, D. B., Hwu, W. W., 2010. Programming Massively Parallel Processors – A Hands-
on Approach. 1st edition. Burlington, MA: Morgan Kaufmann (USA). 280 p. ISBN 978-
0123814722.

Raina, R., Madhavan, A., Ng, A. Y., 2009. Largescale deep unsupervised learning using
graphics processors. In Proceedings of International Conference on Machine Learning.

Ray, L. R., Stengel, R. F., 1993. A Monte Carlo approach to the analysis of control system
robustness. Automatica, vol. 29, no. 1, pp. 229–236. ISSN 0005-1098.

Shen, J. P., Lipasti, M. H., 2005. Modern Processor Design: Fundamentals of Superscalar
Processors. McGraw-Hill Series in Electrical and Computer Engineering. New York
(USA): McGraw-Hill. 640 p.

Strippgen, D., Nagel, K., 2009. Multi-agent traffic simulation with CUDA. In Proceedings
High Performance Computing & Simulation (HPCS '09), pp.106 – 114.

Volkov, V., Demmel, J., May 2008. LU, QR and Cholesky factorizations using vector
capabilities of GPUs. Technical Report No. UCB/EECS-2008-49 [online]. Berkeley:
EECS Department, University of California. Retrieved from:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.html.

VOLUME 5 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 2 2012

62

