
 29

Architecture of Tools and Processes for Affordable Vehicles

J. Stodola*
Faculty of Military Technology, University of Defense, Brno, Czech Republic
* Corresponding author: jiri.stodola@unob.cz,

P. Stodola
Faculty of Economics and Management, University of Defense, Brno, Czech Republic

ABSTRACT: The focus of this paper is on the description of the recommended functional
requirements for the software architecture that enables the integration of tools and processes
for large scale affordable vehicles and propulsion systems. These include: integration,
processes, tools, affordability, repeatability, sustainability, integrity, etc. Prior to
the discussion of the recommended functional requirements a brief description is given on
the two types of integration environments (Monolithic Environments and Best Class
Environments) along with a categorization of the different type of tools considered to be
integrated within the environment. The four categories of tools addressed are Groupware,
Project Management, Product Data Management or Product Lifecycle, and Engineering tools.

KEY WORDS: Software architecture, product and process representation, engineering tools,
data, application

1 INTRODUCTION

When new processes are proposed, new tools discovered, mature tools exist, additional teams
engaged, and distribution of work dispersed all are constrained by affordability, a description
of what these new concepts are must be accompanied by a discussion of how they can be
used. The “how” is the subject of this paper. What follows is a discussion of the salient
features of a computing architecture that will support the Integration of Tools and Processes
for Affordable Vehicles based upon the knowledge discovered in examining the unique and
common needs of how product development is accomplished for vehicles and their respective
propulsion systems. Once the recommended functional requirements are presented
an example of how an implementation of the environment would be used to perform a simple
distributed engineering analysis of an aircraft component is presented. In order for
an organization to execute process du jour, it utilizes various software tools to carry out
individual tasks within the process. For clarity, a software tool in this article is defined as
“a software application used to perform or facilitate the execution of specified task in
a process”. Here, software tools are categorized into four classes: Groupware tools (video
conferencing, online meetings, teleconferencing etc.), Project Management tools (project
schedules, distributing information, resource planning, team organization, process work flows
etc.), Product Data management or Product Lifecycle tools (data, drawings, reports, models
etc.), and Engineering tools (Computed Aided design – CAD, Computer Aided Manufacture –
CAM, Computer Aided Engineering – CAE) (Sehra at all., 2006).

VOLUME 1 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 1 2008

 30

2 ENGINEERING TOOLS INTEGRATION

Over the past twenty five years the two primary paradigms that have emerged to perform
Multidisciplinary Analysis and Design (MAD) are Monolithic Approach (MA) and Best
in Class Approach (BCA) systems.

The monolithic MAD environment systems consist of a single application/tool that contains
all necessary functionality to perform the desired analysis or design. If well designed, these
monolithic systems contain a single database with a well-defined interface in which each
functional module communicates all information through the centralized database. Each
module appears independently in the system but must obtain all of its inputs and write all
output that is needed by other modules to the centralized database. These systems also usually
have standard Application Programming Interfaces (APIs) that enable communication with
the monolithic system and at times the ability, with some effort, to add additional functional
modules to the environment. In addition, these systems often have a High Order Language
(HOL) that is used to combine the modules to solve a specified problem. A standard set
of sequences written in this HOL are often available in these environments or a single
sequence that can solve many variations of a predefined set of problems is used.
The monolithic applications give users access to the HOL so they combine the available
modules to customize the system to solve problems not accounted for in the standard set
of sequences. These monolithic systems are typically easy to administer and are fairly robust
with good error trapping and handling. However, if not well designed they can be rigid and
difficult to customize and may require access to source code of modules that are being added
to the system. Also, the monolithic systems do not deal well with highly distributed
organizations and data. But most importantly they are usually built around a single discipline
expertise, such as mechanical analysis, CAD, or KBE, and have marginal capabilities in other
disciplines, such as controls, or computational fluid dynamics.

 The BCA system typically uses a scripting language, such as Perl (Wall et al., 2001) or Tcl
(Outsterhout, 1994) to “glue” together several independent application tools that provide
the “best” functionality for a given discipline to define a process and solve a selected
problem. Such existing approaches can be found in iSight (http://www.engineous.com),
Model center (http://www.phoenix-int.com), MDICE (http://www.cfdrc.com), and Visual
Doc (http://www.vrand.com). This approach “wraps” each application with the scripting
language and defines simple input and output that a given application requires or generates.
A major benefit of this approach is that it gives the end user access to the “best” technology
available in a given domain and thus supports the “plug and play” Paradigm to a certain
extent. This approach is much more portable to engineering domain experts since they can
include their “best of class” application for a specific problem being solved. In theory this
approach appears quite attractive, but in practice many problems arise with this approach.
Each application has different data structures and formats. This can lead to difficult and
inefficient data transfer between applications. Scripts for large-scale problems tend to become
unruly/problem specific, and hence fragile, difficult to maintain, and not reusable. Also, more
importantly, there is no well-defined manner to trap errors that occur during the process. This
may not be an issue when combining only a few applications but when the number begins to
approach the 10s or 100s the ability to determine if, when, where, and why a failure occurred
becomes the critical element in the success of the BCA.

VOLUME 1 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 1 2008

 31

3 FUNCTIONAL NEEDS AND ARCHITECTURE

To best satisfy the requirements of product development in today’s business environment
a distributed BCA MAD is desired with the following qualities:
1. Product representation – a way to represent the product along with the design intent or

rules;
2. Seamless access to varying fidelity best in class tools to evaluate or modify the design;
3. Process Representation with Secure Communication between all tools, data, and vested

parties involved in the product development process;
4. Modularity that enables high level of reuse when moving from one application to

the other.
Such a system will allow specialized communities to exist (Centers of Excellence) but will
require them to publish and maintain with defined interfaces to their domain so that
communications between the different domains can take place at a level that is required to
evaluate the impact of one domain on another. If the interfaces are well defined and
“published” on network they can be accessed anywhere, anytime allowing all participants
access to the most recent product information and technology. Even though the specified
functional requirements would allow communication and integration between the four classes
of tools, the primary focus is on the integration of project Management tools, Product Data
Management or Product Lifecycle tools, and Engineering tools.

To satisfy the integration requirements arising in the emerging product development
processes in today’s business environment a functional architecture is proposed.
The integration of the tools will result in tangible benefits to a company and organization.
It should also be evident that an ad-hoc approach to performing the integration of this plethora
of widely distributed tools would not be adequate. Thus, a formal process should be adopted
to developing an integration environment. This environment should enable the integration and
communication across the various tools and data that are encountered during three product
development processes. The functional architecture for an integration environment is
henceforth presented. Here functional architecture is defined as a description of all functional
activities to be performed to achieve the desired mission, the system elements needed
to perform the functions, and the designation of performance levels of those system elements.
Architecture also includes information on the technologies, interfaces, and location
of functions and is considered an evolving description of an approach to achieving a desired
mission. Throughout the remainder of the document the term Architecture and Functional
Architecture will be used interchangeably. The Architecture shall be capable of supporting
multiple analysis techniques and information standards for any discipline. Realizing
the current investment in tools such as CAD/CAM tools and physics-based solvers (e.g., finite
element modeling packages, computational fluid dynamics packages, computational
electromagnetic solvers, etc.). The Architecture should not require a priori the use of any
geometric representation, analysis technique or information standard. Additionally, different
modules within the architecture should be easily replaceable or maintainable.

Product Representation

The current state-of-the-art in product representation is a “single parametric associative
model, referred to as a Master Model. The Master Model concept traditionally contained only
geometric information, but has now been extended to contain any critical information that
may be needed throughout the life of a product. The Master Model is a single logical
representation of the product that may be distributed geographically of between several
different databases or applications, the point being that there is a single representation
of a product without any duplication of information. All users begin from and update a single

VOLUME 1 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 1 2008

 32

representation of the product to ensure consistency. A CAD system (UniGraphics, ProE,
Catia, etc.) along with a PDM (e-Matrix, Windchill, etc.) system are typically combined
to create a master Model. Many companies are also coupling the Master Model with KBE
systems resulting in what is called an “Intelligent Master Model” (IMM) or Smart Product
model (SPM). This allows design intent and rules to be maintained with the model along with
the model representation itself. Typical KBE system employed are AML, Inlet and UG
Knowledge Fusion. A few features that are desirable for the IMM are:
1. Ability to quickly generate a representation of a product
2. Support parametric and topological changes
3. Maintain and document the design intent
4. Demand Driven Calculation – the product representation should perform only

the calculation that are required to determine the result of a desired analysis or functional
evaluation

5. Capture the knowledge and design intent of the product
6. Ability to quickly generate the domain specific analysis and design models when

parametric or topological changes are made. This feature is key to supporting high fidelity
analysis and numerical zooming early in the design process

7. Support Dependency Tracking - the product representation should automatically track
the dependencies between various objects and properties within the model

Seamless Access to Engineering Tools and Data

Multidisciplinary. It is no longer acceptable to perform design analysis in the technical
disciplines separately. Any “optimization” at the component or subsystem level will lead
to a sub-optimum system. There are various approaches to this problem. It is important
to remember that multidisciplinary simulation couples physical processes and the design
of an interface has therefore to be based on physical understanding, and not only on
implementation issues. There are many tools which assemble simulation programs used for
a workflow together in an integrated environment, but even those environments need,
as a core element, interfaces for the physical interaction between, the simulation programs and
the models used.

Multi-level/Fidelity Zooming. The applied vehicle technology architecture, in general,
should allow consistent analyses to be performed at all levels within the system. Similar
multidisciplinary applications, so as to the importance of interfaces to Multi-level analysis.
The term Multi-level is also known as numerical zooming or higher fidelity forward.
The fundamental goal is to bring higher fidelity information up to a system view of the model
where the application can “see” the effects of all the constituents interacting together.
The definition of higher fidelity information includes 1-dimensional through 3-dimensional
Computational Fluid Dynamics (CFD), experimental data and historical rules of development.

With a BCA approach the need to “glue” together different types of applications becomes
a critical aspect of the environment. Earlier programs such as iSight and Model Center use
scripting languages as this glue. This requires wrapping an application in a scripting language
such as Perl, Tel, or Python (Claus at all., 1991) to expose the application or data that one
wishes to bring into the environment. These applications expose parameters in this
environment by parsing the applications input and output text files. With this technique
the application is exposed as a single entity based on a set of input and output parameters.
This technique works reasonable well when less that half a dozen applications are involved in
a given process and when they reside on a single platform. Also, the size of the inputs/outputs
from the application is restricted to small text files (a few megabytes). This technique tends to
break down when the number of applications grows beyond 10 – 25 and the inputs/outputs
of a given application are non-text files and are of a large size (100s of megabytes to

VOLUME 1 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 1 2008

 33

gigabytes). A great deal of knowledge has to be included in the wrapper to interact with
the application on the lowest possible level that the application will support. The wrapper that
exposes the object (application, hardware, etc.) will be referred to as a service provider. AQ
service provider exposes discrete functionality of an object by a set of attributes to
the environment; the functionality exposed is referred to as a service. The act of inserting
the service into an environment is referred to as publishing. Two types of service providers
are envisioned: Method Service Providers and Context Service Providers. A Method Service
Provider publishes one or more methods associated with a given application where a Context
Service Provider publishes one or more pieces of data associated with a product model (IMM
or SPM). The following are required key features creating service providers:
1. Wrap with an object oriented language
2. Communicate intermediate results back to the client
3. Develop standard interfaces for application domains
4. Trap errors encountered within the application and pass meaningful information back to

the client
5. Enable the application in a server mode to allow finer granular interaction between

the wrapper and the application
6. Expose the application at a level of granularity that supports the most reusability
7. Once the service providers have been created it must then be published with attributes so

the environment knows where it is and what it can do. Some examples in the world are:
Sun’s Jini Technology (Lutz, 2001), web Services Sun ONE, Microsoft´s.Net
(http://sun.com), Globus, Integrated Virtual Product Development (iVIP) etc.

Classification of Interfaces

Simulation tools have usually been designed as stand-alone applications in a prescribed work
flow. Any two tools rarely use the same native model description or data structure. Interfaces
provide a means of communication between two or more coupled applications. Interfaces can
be categorized in terms of work flow aspect. Here, a distinction can be made between uni-
directional and bi-directional interfaces (Sehra et al., 2006), Fig. 1. A uni-directional interface
is needed if one program is used as a pre-processor for a second program. Typical examples
are grid generators for fine element analyses. Bi-directional interfaces handle the flow
of information between two running simulations. Typical examples are co-simulation
interfaces.

Figure 1: Uni-directional and Bi-directional Interfaces

The concepts of a connector object within the vehicle architecture is centered on providing
a suite of objects that allows two components to connect together whether they are
of the same/different discipline, same/different fidelity or same/different computing platform
and have the object to handle all the intricacies of that connection. A way to illustrate this
concept can be served by describing how this connector object would work in assembling a
vehicle engine numerically. Although engine components are the basic building blocks
of propulsion simulations, connector objects are the means by which components

VOLUME 1 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 1 2008

 34

communicate and provide the technology support for zooming and the required
expansion/contraction/averaging of data. Connectors are represented in the architecture as
objects. Additionally, the connector object provides a means to introduce distributed
processing into the subject engine simulations. Connectors not only facilitate “what” data
moves but also “how” the date moves around within the simulation. When the nature
of the simulation determines that a connector doesn’t add anything, or isn’t needed, the effect
of the connector is a data pass-through operation (Sehra et al., 2006). Pictorially these
concepts can be illustrated in Fig. 2.

Figure 2: Effect of the connector

The connections between the engine components which are the source of the data and

the methods are implemented with C++ classes called “connectors”. Every such connection
between a source component and a destination component uses two different connectors,
a source connector and a destination connector. Thus a component has one input connector for
each input and a many output connectors as there are other components which use this
component’s output as input data. The connectors, upon creation, determine whether
the mating connector is local or remote. A local connector is the same process and hence
the two connectors may directly call methods of one another in order to request and transfer
data. A remote connector is a different computer and hence requires communication
of messages in order to exchange data. COM (http://www.zgdv.de), COBRAQ (Pattison,
1998), Java RMI (Fintan, 2002), and PVM (Niemayer & Knudsen, 2002) are representative
libraries that could be used to transport the data.

When an engine component is ready to execute, the connector transfers the data from
the message to the engine component object. The very significant advantage of this approach
is that there are no software concurrency problems because of multiple engine components
updating concurrently in different machines. This allows all remote communication from
other engine components in other computers to actually become communication calls to
the single component which then distributes the data request or data reply information to
the individual C++ objects representing the engine components, avoiding software
concurrency issues.

4 PROCESS REPRESENTATION AND COMMUNICATION OF DISTRIBUTED
DATA, APPLICATIONS, AND VESTED PARTICIPANTS

The subject applied vehicle technology architecture is comprised of the hardware and
software computer systems needed to perform all the required analyses that are involved in
vehicle design. This architecture must operate within a highly distributed, heterogeneous
modeling and computing environment (Sehra et al., 2006). The envisioned architecture is an
object oriented peer-to-peer (P2P) service based open architecture that must support
the specified layers, shown in Fig. 3. Starting from the bottom of the figure, Layer 1 consists
of the computer hardware in the system. Next, Layer 2 functionality addresses the need for
hardware resource management, such as load balancing on the hardware. Layer 3 represents

VOLUME 1 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 1 2008

 35

the abstraction or the separation of the services/object from the hardware and
“exposes/publishes” these services on the network as network services. In addition to
the publication this layer must support the “discovery” of services by clients and
the communication with or between the services. Finally, the top layer, Layer 4, represents
an object model that enables the combining of the services to represent a process or multi-
service transaction. This layer must also support the execution of this object representation
of the process and the passing of information from service to service.

Figure 3: Recommended architectural functional layers

Level 1 Hardware Computing Environment
The architecture should run natively on multiple hardware platforms and operating systems.
At a minimum it should operate under Unix, Linux, and the Microsoft Windows systems.
Level 2 Hardware Load Balancing
The architecture enables the use of available load balancing applications, such as Platform
Computing´s Load Sharing Facility, IBM´sLoad Leveler, and NASA Ames´ Portable Bath
System (http://www.csm.ornl.gov) etc.
Level 3 Network Services – Service Oriented Architecture (SOA)
SOA have three basic components (Service Requester, Service Registry, and Service
Provider) and three basic functions (Publish, Find, and Bind).
Level 4 Service Federation and Execution Coordination – An Object Model for Service
Orchestration
The P2P service-oriented architecture proposed targets multiparty service transactions.
A collection of all registered service providers is referred to as a service grid. This is
essentially level 3 in Fig. 3. A nested transaction is composed of a federation of providers that
came together for completing a transaction. Hence, the primary function of Level 4 is to
combine and orchestrate communication between the services in Level 3. The service
providers do not have mutual associations prior to the transaction. They come together for
a specific transaction. A standard object model representing these three components in
a nested transaction is critical for the applied vehicle technology architecture. The object that
represents the process, action, and data can be created by any end-user, application, or service
and act as a service requestor and submit the object to the environment for execution.
The object that represents the process must support different types of execution strategies for
the process such as sequential, parallel, looping and conditionals. It must also account for
the mapping/relationship of data between steps or services in the process. Finally, it is
desirable that the process object support recursion.

VOLUME 1 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 1 2008

 36

5 MODULARITY – MAXIMALIZATION OF REUSE

The BCA creates the need to link together disparate applications with different needs and
different data structures. This tends to create the development of applications that work on
a very specific problem or narrow range of problems. One of the primary goals
of an environment should be to develop a system that maximizes reuse when moving from
one application, project, or product development to another. This will at least attempt to
minimize the resources needed to get the next design applications to a point where it is useful
in a timely fashion. An environment that promotes maximum reuse will have the following
features:
1. Use an object oriented approach for the environment (Java, C++, etc.)
2. Create Common Object Models for specific domains (CAD, CAE, Optimization, etc.) and

pass these objects around to the services when possible
3. Create standard interfaces for services
4. Create generic wrappers for applications
5. Separate product data from applications and their wrapper
6. Have at least one “champion” of the environment
Although all of these sound logical they are by no means trivial elements when undertaking
a new development effort. A major portion of the resources used when going over to a new
application is in the development of the product models (Stodola, 2007). That is the Master
Model, Intelligent Master Model or Smart Product Model. Also, to modify existing
components and to bring in additional applications at any given time takes a considerable
amount of effort to do properly if you desire reuse. Finally, item 6 is essential but often easily
over-looked. If an organization does not commit the resources to have an individual who is
a “champion” of the environment the effectiveness of the use of the environment will be
greatly hampered.

REFERENCES

Sehra, A., Reed, J., Hoenlinger, H., Luber, W., Stodola, J., Follen, G., Hoeninger, M., et al.
2006. Integration of Tools and Processes for Affordable Weapons. Final Report of the NATO
Research Group AVT 093, Paris (324 p).
Wall, L., Christian, T., Orwant, J. Programing Perl, 2001. O´Reilly.
Outsterhout, J. K., 1994. Tcl and the Tk Toolkit. Addison – Wesley.
iSight, http://www.engineous.com/index.htm
Model Center, http://www.phoenix-int.com/products/ModelCenter.html
MDICE, http://www.cfdrc.com/bizareas/aerospace/aeromechanics/aeroelesticity/html
VisualDoc, http://www.vrand.com/
Claus, R. W.-Evans, A. L. - Lytle, J. K. – Nicholas ,L. D., Numerical Propulsion Systems
Simulation., 1991. Computing Systems in Engineering, Vol.2, No. 4, pp. 357 – 364.
Lutz, M., Programing Python” Object Oriented Scripting. 2001. O´Reilly.
http://www.sun.com/software/sunone/
iVIP, http://www.zgdv.de/zgdv/refprojects/ivip/index_html_en.
Pattison, T., Programming Distributed Applications with COM and Microsoft Visual Basic
6.0. 1998. Microsoft Press.
Fintan, B., Pure COBRA. 2002, Sams.
Niemayer, P.-Knudsen, J., Learning Java. 2002. O´Reily.
PVM, http://www.csm.ornl.gov/pvm/pvm_home_html
Stodola, J., Modeling and Simulation in the Virtual Design of Armored Vehicles. 2007.
IVMT´07. ISBN 978-80-723-2, pp 31 – 38.

VOLUME 1 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 1 2008

