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ABSTRACT: The focus of this paper is on the description of the recommended functional 
requirements for the software architecture that enables the integration of tools and processes 
for large scale affordable vehicles and propulsion systems. These include: integration, 
processes, tools, affordability, repeatability, sustainability, integrity, etc. Prior to 
the discussion of the recommended functional requirements a brief description is given on 
the two types of integration environments (Monolithic Environments and Best Class 
Environments) along with a categorization of the different type of tools considered to be 
integrated within the environment. The four categories of tools addressed are Groupware, 
Project Management, Product Data Management or Product Lifecycle, and Engineering tools. 
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1 INTRODUCTION 

When new processes are proposed, new tools discovered, mature tools exist, additional teams 
engaged, and distribution of work dispersed all are constrained by affordability, a description 
of what these new concepts are must be accompanied by a discussion  of how they can be 
used.  The “how” is the subject of this paper. What follows is a discussion of the salient 
features of a computing architecture that will support the Integration of Tools and Processes 
for Affordable Vehicles based upon the knowledge discovered in examining the unique and 
common needs of how product development is accomplished for vehicles and their respective 
propulsion systems.  Once the recommended functional requirements are presented 
an example of how an implementation of the environment would be used to perform a simple 
distributed engineering analysis of an aircraft component is presented. In order for 
an organization to execute process du jour, it utilizes various software tools to carry out 
individual tasks within the process. For clarity, a software tool in this article is defined as 
“a software application used to perform or facilitate the execution of specified task in 
a process”. Here, software tools are categorized into four classes: Groupware tools (video 
conferencing, online meetings, teleconferencing etc.), Project Management tools (project 
schedules, distributing information, resource planning, team organization, process work flows 
etc.), Product Data management or Product Lifecycle tools (data, drawings, reports, models 
etc.), and Engineering tools (Computed Aided design – CAD, Computer Aided Manufacture – 
CAM, Computer Aided Engineering – CAE) (Sehra at all., 2006). 
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2 ENGINEERING TOOLS INTEGRATION 

Over the past twenty five years the two primary paradigms that have emerged to perform 
Multidisciplinary Analysis and Design (MAD) are Monolithic Approach (MA) and Best 
in Class Approach (BCA) systems. 

The monolithic MAD environment systems consist of a single application/tool that contains 
all necessary functionality to perform the desired analysis or design. If well designed, these 
monolithic systems contain a single database with a well-defined interface in which each 
functional module communicates all information through the centralized database. Each 
module appears independently in the system but must obtain all of its inputs and write all 
output that is needed by other modules to the centralized database. These systems also usually 
have standard Application Programming Interfaces (APIs) that enable communication with 
the monolithic system and at times the ability, with some effort, to add additional functional 
modules to the environment. In addition, these systems often have a High Order Language 
(HOL) that is used to combine the modules to solve a specified problem. A standard set 
of sequences written in this HOL are often available in these environments or a single 
sequence that can solve many variations of a predefined set of problems is used. 
The monolithic applications give users access to the HOL so they combine the available 
modules to customize the system to solve problems not accounted for in the standard set 
of sequences. These monolithic systems are typically easy to administer and are fairly robust 
with good error trapping and handling. However, if not well designed they can be rigid and 
difficult to customize and may require access to source code of modules that are being added 
to the system. Also, the monolithic systems do not deal well with highly distributed 
organizations and data. But most importantly they are usually built around a single discipline 
expertise, such as mechanical analysis, CAD, or KBE, and have marginal capabilities in other 
disciplines, such as controls, or computational fluid dynamics. 

 The BCA system typically uses a scripting language, such as Perl (Wall et al., 2001) or Tcl 
(Outsterhout, 1994) to “glue” together several independent application tools that provide 
the “best” functionality for a given discipline to define a process and solve a selected 
problem. Such existing approaches can be found in iSight (http://www.engineous.com), 
Model center (http://www.phoenix-int.com), MDICE (http://www.cfdrc.com), and Visual 
Doc (http://www.vrand.com). This approach “wraps” each application with the scripting 
language and defines simple input and output that a given application requires or generates. 
A major benefit of this approach is that it gives the end user access to the “best” technology 
available in a given domain and thus supports the “plug and play” Paradigm to a certain 
extent. This approach is much more portable to engineering domain experts since they can 
include their “best of class” application for a specific problem being solved. In theory this 
approach appears quite attractive, but in practice many problems arise with this approach. 
Each application has different data structures and formats. This can lead to difficult and 
inefficient data transfer between applications. Scripts for large-scale problems tend to become 
unruly/problem specific, and hence fragile, difficult to maintain, and not reusable. Also, more 
importantly, there is no well-defined manner to trap errors that occur during the process. This 
may not be an issue when combining only a few applications but when the number begins to 
approach the 10s or 100s the ability to determine if, when, where, and why a failure occurred 
becomes the critical element in the success of the BCA. 
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3 FUNCTIONAL NEEDS AND ARCHITECTURE 

To best satisfy the requirements of product development in today’s business environment 
a distributed BCA MAD is desired with the following qualities: 
1. Product representation – a way to represent the product along with the design intent or 

rules; 
2. Seamless access to varying fidelity best in class tools to evaluate or modify the design; 
3. Process Representation with Secure Communication between all tools, data, and vested 

parties involved in the product development process; 
4. Modularity that enables high level of reuse when moving from one application to 

the other. 
Such a system will allow specialized communities to exist (Centers of Excellence) but will 
require them to publish and maintain with defined interfaces to their domain so that 
communications between the different domains can take place at a level that is required to 
evaluate the impact of one domain on another. If the interfaces are well defined and 
“published” on network they can be accessed anywhere, anytime allowing all participants 
access to the most recent product information and technology. Even though the specified 
functional requirements would allow communication and integration  between the four classes 
of tools, the primary focus is on the integration of project Management tools, Product Data 
Management or Product Lifecycle tools, and Engineering tools. 

To satisfy the integration requirements arising in the emerging product development 
processes in today’s business environment a functional architecture is proposed. 
The integration of the tools will result in tangible benefits to a company and organization. 
It should also be evident that an ad-hoc approach to performing the integration of this plethora 
of widely distributed tools would not be adequate. Thus, a formal process should be adopted 
to developing an integration environment. This environment should enable the integration and 
communication across the various tools and data that are encountered during three product 
development processes. The functional architecture for an integration environment is 
henceforth presented. Here functional architecture is defined as a description of all functional 
activities to be performed to achieve the desired mission, the system elements needed 
to perform the functions, and the designation of performance levels of those system elements. 
Architecture also includes information on the technologies, interfaces, and location 
of functions and is considered an evolving description of an approach to achieving a desired 
mission. Throughout the remainder of the document the term Architecture and Functional 
Architecture will be used interchangeably. The Architecture shall be capable of supporting 
multiple analysis techniques and information standards for any discipline. Realizing 
the current investment in tools such as CAD/CAM tools and physics-based solvers (e.g., finite 
element modeling packages, computational fluid dynamics packages, computational 
electromagnetic solvers, etc.). The Architecture should not require a priori the use of any 
geometric representation, analysis technique or information standard. Additionally, different 
modules within the architecture should be easily replaceable or maintainable. 

Product Representation 

The current state-of-the-art in product representation is a “single parametric associative 
model, referred to as a Master Model. The Master Model concept traditionally contained only 
geometric information, but has now been extended to contain any critical information that 
may be needed throughout the life of a product. The Master Model is a single logical 
representation of the product that may be distributed geographically of between several 
different databases or applications, the point being that there is a single representation 
of a product without any duplication of information. All users begin from and update a single 
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representation of the product to ensure consistency. A CAD system (UniGraphics, ProE, 
Catia, etc.) along with a PDM (e-Matrix, Windchill, etc.) system are typically combined 
to create a master Model. Many companies are also coupling the Master Model with KBE 
systems resulting in what is called an “Intelligent Master Model” (IMM) or Smart Product 
model (SPM). This allows design intent and rules to be maintained with the model along with 
the model representation itself. Typical KBE system employed are AML, Inlet and UG 
Knowledge Fusion. A few features that are desirable for the IMM are: 
1. Ability to quickly generate a representation of a product 
2. Support parametric and topological changes 
3. Maintain and document the design intent 
4. Demand Driven Calculation – the product representation should perform only 

the calculation that are required to determine the result of a desired analysis or functional 
evaluation 

5. Capture the knowledge and design intent of  the product 
6. Ability to quickly generate the domain specific analysis and design models when 

parametric or topological changes are made. This feature is key to supporting high fidelity 
analysis and numerical zooming early in the design process 

7. Support Dependency Tracking - the product representation should automatically track 
the dependencies between various objects and properties within the model 

Seamless Access to Engineering Tools and Data 

Multidisciplinary. It is no longer acceptable to perform design analysis in the technical 
disciplines separately. Any “optimization” at the component or subsystem level will lead 
to a sub-optimum system. There are various approaches to this problem. It is important 
to remember that multidisciplinary simulation couples physical processes and the design 
of an interface has therefore to be based on physical understanding, and not only on 
implementation issues. There are many tools which assemble simulation programs used for 
a workflow together in an integrated environment, but even those environments need, 
as a core element, interfaces for the physical interaction between, the simulation programs and 
the models used. 

Multi-level/Fidelity Zooming. The applied vehicle technology architecture, in general, 
should allow consistent analyses to be performed at all levels within the system. Similar 
multidisciplinary applications, so as to the importance of interfaces to Multi-level analysis. 
The term Multi-level is also known as numerical zooming or higher fidelity forward. 
The fundamental goal is to bring higher fidelity information up to a system view of the model 
where the application can “see” the effects of all the constituents interacting together. 
The definition of higher fidelity information includes 1-dimensional through 3-dimensional 
Computational Fluid Dynamics (CFD), experimental data and historical rules of development.  

With a BCA approach the need to “glue” together different types of applications becomes 
a critical aspect of the environment. Earlier programs such as iSight and Model Center use 
scripting languages as this glue.  This requires wrapping an application in a scripting language 
such as Perl, Tel, or Python (Claus at all., 1991) to expose the application or data that one 
wishes to bring into the environment. These applications expose parameters in this 
environment by parsing the applications input and output text files. With this technique 
the application is exposed as a single entity based on a set of input and output parameters. 
This technique works reasonable well when less that half a dozen applications are involved in 
a given process and when they reside on a single platform. Also, the size of the inputs/outputs 
from the application is restricted to small text files (a few megabytes). This technique tends to 
break down when the number of applications grows beyond 10 – 25 and the inputs/outputs 
of a given application are non-text files and are of a large size (100s of megabytes to 
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gigabytes). A great deal of knowledge has to be included in the wrapper to interact with 
the application on the lowest possible level that the application will support. The wrapper that 
exposes the object (application, hardware, etc.) will be referred to as a service provider. AQ 
service provider exposes discrete functionality of an object by a set of attributes to 
the environment; the functionality exposed is referred to as a service. The act of inserting 
the service into an environment is referred to as publishing. Two types of service providers 
are envisioned:  Method Service Providers and Context Service Providers. A Method Service 
Provider publishes one or more methods associated with a given application where a Context 
Service Provider publishes one or more pieces of data associated with a product model (IMM 
or SPM). The following are required key features creating service providers: 
1. Wrap with an object oriented language 
2. Communicate intermediate results back to the client 
3. Develop standard interfaces for application domains 
4. Trap errors encountered within the application and pass meaningful information back to 

the client 
5. Enable the application in a server mode to allow finer granular interaction between 

the wrapper and the application 
6. Expose the application at a level of granularity that supports the most reusability 
7. Once the service providers have been created it must then be published with attributes so 

the environment knows where it is and what it can do. Some examples in the world are: 
Sun’s Jini Technology (Lutz, 2001), web Services Sun ONE, Microsoft´s.Net 
(http://sun.com), Globus, Integrated Virtual Product Development (iVIP) etc. 

Classification of Interfaces 

Simulation tools have usually been designed as stand-alone applications in a prescribed work 
flow. Any two tools rarely use the same native model description or data structure. Interfaces 
provide a means of communication between two or more coupled applications. Interfaces can 
be categorized in terms of work flow aspect. Here, a distinction can be made between uni-
directional and bi-directional interfaces (Sehra et al., 2006), Fig. 1. A uni-directional interface 
is needed if one program is used as a pre-processor for a second program. Typical examples 
are grid generators for fine element analyses. Bi-directional interfaces handle the flow 
of information between two running simulations. Typical examples are co-simulation 
interfaces. 

 
Figure 1: Uni-directional and Bi-directional Interfaces 
 
The concepts of a connector object within the vehicle architecture is centered on providing 
a suite of objects that allows two components to connect together whether they are 
of the same/different discipline, same/different fidelity or same/different computing platform 
and have the object to handle all the intricacies of that connection. A way to illustrate this 
concept can be served by describing how this connector object would work in assembling a 
vehicle engine numerically. Although engine components are the basic building blocks 
of propulsion simulations, connector objects are the means by which components 
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communicate and provide the technology support for zooming and the required 
expansion/contraction/averaging of data. Connectors are represented in the architecture as 
objects. Additionally, the connector object provides a means to introduce distributed 
processing into the subject engine simulations. Connectors not only facilitate “what” data 
moves but also “how” the date moves around within the simulation. When the nature 
of the simulation determines that a connector doesn’t add anything, or isn’t needed, the effect 
of the connector is a data pass-through operation (Sehra et al., 2006). Pictorially these 
concepts can be illustrated in Fig. 2. 

 
Figure 2: Effect of the connector 

 
The connections between the engine components which are the source of the data and 

the methods are implemented with C++ classes called “connectors”. Every such connection 
between a source component and a destination component uses two different connectors, 
a source connector and a destination connector. Thus a component has one input connector for 
each input and a many output connectors as there are other components which use this 
component’s output as input data.  The connectors, upon creation, determine whether 
the mating connector is local or remote. A local connector is the same process and hence 
the two connectors may directly call methods of one another in order to request and transfer 
data. A remote connector is a different computer and hence requires communication 
of messages in order to exchange data. COM (http://www.zgdv.de), COBRAQ (Pattison, 
1998), Java RMI (Fintan, 2002), and PVM (Niemayer & Knudsen, 2002) are representative 
libraries that could be used to transport the data. 

When an engine component is ready to execute, the connector transfers the data from 
the message to the engine component object. The very significant advantage of this approach 
is that there are no software concurrency problems because of multiple engine components 
updating concurrently in different machines. This allows all remote communication from 
other engine components in other computers to actually become communication calls to 
the single component which then distributes the data request or data reply information to 
the individual C++ objects representing the engine components, avoiding software 
concurrency issues. 

4 PROCESS REPRESENTATION AND COMMUNICATION OF DISTRIBUTED 
DATA, APPLICATIONS, AND VESTED PARTICIPANTS 

The subject applied vehicle technology architecture is comprised of the hardware and 
software computer systems needed to perform all the required analyses that are involved in 
vehicle design. This architecture must operate within a highly distributed, heterogeneous 
modeling and computing environment (Sehra et al., 2006). The envisioned architecture is an 
object oriented peer-to-peer (P2P) service based open architecture that must support 
the specified layers, shown in Fig. 3. Starting from the bottom of the figure, Layer 1 consists 
of the computer hardware in the system. Next, Layer 2 functionality addresses the need for 
hardware resource management, such as load balancing on the hardware. Layer 3 represents 
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the abstraction or the separation of the services/object from the hardware and 
“exposes/publishes” these services on the network as network services. In addition to 
the publication this layer must support the “discovery” of services by clients and 
the communication with or between the services. Finally, the top layer, Layer 4, represents 
an object model that enables the combining of the services to represent a process or multi-
service transaction. This layer must also support the execution of this object representation 
of the process and the passing of information from service to service. 

 
Figure 3: Recommended architectural functional layers 
 
Level 1 Hardware Computing Environment 
The architecture should run natively on multiple hardware platforms and operating systems. 
At a minimum it should operate under Unix, Linux, and the Microsoft Windows systems. 
Level 2 Hardware Load Balancing 
The architecture enables the use of available load balancing applications, such as Platform 
Computing´s Load Sharing Facility, IBM´sLoad Leveler, and NASA Ames´ Portable Bath 
System (http://www.csm.ornl.gov) etc.  
Level 3 Network Services – Service Oriented Architecture (SOA) 
SOA have three basic components (Service Requester, Service Registry, and Service 
Provider) and three basic functions (Publish, Find, and Bind).  
Level 4 Service Federation and Execution Coordination – An Object Model for Service 
Orchestration 
The P2P service-oriented architecture proposed targets multiparty service transactions. 
A collection of all registered service providers is referred to as a service grid. This is 
essentially level 3 in Fig. 3. A nested transaction is composed of a federation of providers that 
came together for completing a transaction. Hence, the primary function of Level 4 is to 
combine and orchestrate communication between the services in Level 3. The service 
providers do not have mutual associations prior to the transaction. They come together for 
a specific transaction. A standard object model representing these three components in 
a nested transaction is critical for the applied vehicle technology architecture. The object that 
represents the process, action, and data can be created by any end-user, application, or service 
and act as a service requestor and submit the object to the environment for execution. 
The object that represents the process must support different types of execution strategies for 
the process such as sequential, parallel, looping and conditionals. It must also account for 
the mapping/relationship of data between steps or services in the process. Finally, it is 
desirable that the process object support recursion.  
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5 MODULARITY – MAXIMALIZATION OF REUSE  

The BCA creates the need to link together disparate applications with different needs and 
different data structures. This tends to create the development of applications that work on 
a very specific problem or narrow range of problems. One of the primary goals 
of an environment should be to develop a system that maximizes reuse when moving from 
one application, project, or product development to another. This will at least attempt to 
minimize the resources needed to get the next design applications to a point where it is useful 
in a timely fashion. An environment that promotes maximum reuse will have the following 
features: 
1. Use an object oriented approach for the environment (Java, C++, etc.) 
2. Create Common Object Models for specific domains (CAD, CAE, Optimization, etc.) and 

pass these objects around to the services when possible 
3. Create standard interfaces for services 
4. Create generic wrappers for applications 
5. Separate product data from applications and their wrapper 
6. Have at least one “champion” of the environment 
Although all of these sound logical they are by no means trivial elements when undertaking 
a new development effort. A major portion of the resources used when going over to a new 
application is in the development of the product models (Stodola, 2007). That is the Master 
Model, Intelligent Master Model or Smart Product Model. Also, to modify existing 
components and to bring in additional applications at any given time takes a considerable 
amount of effort to do properly if you desire reuse. Finally, item 6 is essential but often easily 
over-looked. If an organization does not commit the resources to have an individual who is 
a “champion” of the environment the effectiveness of the use of the environment will be 
greatly hampered. 

 
REFERENCES 
 
Sehra, A., Reed, J., Hoenlinger, H., Luber, W., Stodola, J., Follen, G., Hoeninger, M., et al. 
2006. Integration of Tools and Processes for Affordable Weapons. Final Report of the NATO 
Research Group AVT 093, Paris (324 p). 
Wall, L., Christian, T., Orwant, J. Programing Perl, 2001. O´Reilly. 
Outsterhout, J. K., 1994. Tcl and the Tk Toolkit. Addison – Wesley. 
iSight, http://www.engineous.com/index.htm 
Model Center, http://www.phoenix-int.com/products/ModelCenter.html 
MDICE, http://www.cfdrc.com/bizareas/aerospace/aeromechanics/aeroelesticity/html 
VisualDoc, http://www.vrand.com/ 
Claus, R. W.-Evans, A. L. - Lytle, J. K. – Nicholas ,L. D., Numerical Propulsion Systems 
Simulation., 1991. Computing Systems in Engineering, Vol.2, No. 4, pp. 357 – 364. 
Lutz, M., Programing Python” Object Oriented Scripting. 2001. O´Reilly. 
http://www.sun.com/software/sunone/ 
iVIP, http://www.zgdv.de/zgdv/refprojects/ivip/index_html_en. 
Pattison, T., Programming Distributed Applications with COM and Microsoft Visual Basic 
6.0. 1998. Microsoft Press. 
Fintan, B., Pure COBRA. 2002, Sams. 
Niemayer, P.-Knudsen, J., Learning Java. 2002. O´Reily. 
PVM, http://www.csm.ornl.gov/pvm/pvm_home_html 
Stodola, J., Modeling and Simulation in the Virtual Design of Armored Vehicles. 2007. 
IVMT´07. ISBN 978-80-723-2, pp 31 – 38. 

VOLUME 1 TRANSACTIONS ON TRANSPORT SCIENCES NUMBER 1 2008


