
Transactions on Transport Sciences | SI SCSP conference/202544

Transactions on Transport Sciences
Peer-Reviewed Open Access Journal

SI SCSP conference/2025  DOI: 10.5507/tots.2025.010

journal homepage: www.tots.upol.cz

Defining Railway Traffic Conflicts and Optimising Their 
Resolution: A Machine Learning Perspective
Matowicki Michała, Młyńczak Jakubb, Gołębiowski Piotrc, Přikryl Jana

a. Czech Technical University in Prague, Faculty of Transportation Sciences, Konviktska 20, 110 00 Prague
b. Silesian University of Technology, Faculty of Transport and Aviation Engineering, Katowice, Poland
c. Warsaw University of Technology, Faculty of Transport, Koszykowa 75, 00-662 Warsaw, Poland

Abstract: This paper reports on the initial phase of research into au-
tomated traffic conflict resolution for suburban railway operations. It 
defines railway traffic conflicts, categorising types such as catch-up, 
crossing, and proximity, and establishes optimisation criteria focused 
on punctuality, efficiency, safety, and passenger satisfaction. Promising 
machine learning approaches are reviewed, including supervised learn-
ing for conflict prediction, reinforcement learning for adaptive resolu-

tion, and unsupervised methods for identifying conflict-prone scenarios. 
The study concludes by proposing a simulation framework for empirical 
evaluation, providing a foundation for AI-driven advancements in railway 
traffic management.
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1. Introduction

The subject of this article covers the phenomenon described 
in the literature as “rescheduling” (Cacchiani et. al (2014)). 
It can be defined as the rearrangement of schedules (work 
schedules, class schedules, etc.) after the occurrence of an 
undesirable event. This class of problems is used to deal with 
extraordinary situations in various branches of the economy 
and everyday life. One such area is railway transport.

The real-time operation of the railway system is frequently 
exposed to unexpected disruptions that make it impossible 
to meet the planned timetable. In addition, there may be 
problems with rolling stock circulation (train to train tran-
sition) and train crew scheduling (train to train transition). 
From the passenger’s point of view, this can result in train 
delays, loss of connections, insufficient seat supply, train 
cancellations and more. Therefore, there is a need to resolve 
the disrupted situation as soon as possible in order to restore 
the normal operation of railway transport (normal organisa-
tion of railway traffic).

With regard to railway transport, Cacchiani et al. (2014) 
defines the problem of rescheduling as the application of so-
called recovery models and algorithms dedicated to real-time 
railway disturbance and disruption management. Disrup-
tions are divided into two groups – disturbances and dis-
ruptions. The first group (disturbances) are relatively minor 
perturbations to the railway transport system that can be 
resolved by modifying the timetable, but without changes to 
the composition of rolling stock and train crew assignment to 
operate individual trains. An example of a disturbance from 
the first group is an extended stop at a station beyond what 
is scheduled. On the other hand, the second group – disrup-
tions, are relatively large incidents that require timetable 
modifications and the re-assignment of rolling stock and train 
crews to handle them. Within this group, many train paths 
on the traffic chart are cancelled. As an example of a disrup-
tion from the second group, a track washout by a river can 
be given. The issue of rescheduling is one of the branches 
of operations research that has been extensively studied in 
the literature. The most important keywords related to this 

Figure 1: Example of traffic outlook with conflicts identified as red circles (source: AZD Praha GTN solution)
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problem are rescheduling, vehicle assignments, and train 
crew assignments in real time.

Returning to a normal (scheduled) state after an unde-
sirable event (after a perturbation) requires changes to the 
train timetable, possibly to assign different rolling stock to 
particular tasks, and the planning of train crews. In the case 
of minor perturbations, it is sufficient to either reschedule 
trains (i.e., to determine new moments of entry to block in-
tervals or to seek new train paths), change the train running 
order, or cancel a service. In the event of significant disrup-
tions, work begins with the re-preparation of the timetable, 
followed by an analysis of the timetable in terms of rolling 
stock transitions at terminal stations and train crew transi-
tions, and a new timetable is generated on this basis. In the 
strategic phase, the infrastructure manager is responsible 
for timetable construction, while the railway companies are 
responsible for updating their rolling stock and train crew 
schedules. These two entities should work together in the 
operational phase and make the best decisions.

A key difference between the process of timetable con-
struction and resolving traffic conflicts is time available for 
decision-making. In the latter case, the decision should be 
made as quickly as possible, usually within a few minutes. 
Within this short timeframe, multifaceted and complex deci-
sions have to be made, which have to respect many boundary 
conditions. On top of this, the decisions must be rational, tak-
ing into account multiple, often conflicting, objective func-
tions. At present, dispatchers of the infrastructure manager 
rely on their experience, prior knowledge, and best practices 
to make these decisions manually, without the aid of deci-
sion support tools, particularly intelligent decision support 
systems. Developing such tools is therefore essential to assist 
line dispatchers in making informed, efficient decisions for 
resolving the wide range traffic conflicts in short time.

Besides the manual conflict resolution, many railway net-
works today still rely on local dispatchers who resolve con-
flicts only within a single dispatching area rather than across 
the entire network. As a result, solutions devised at the local 
level may inadvertently cause additional knock-on effects up-
stream or downstream, leading to significant delays and ineffi-
ciencies overall. Centralized and automated conflict resolution 
systems have the potential to provide a broader, system-wide 
view, enabling dispatchers to make better-informed decisions 
while coordinating with adjacent control areas. By incorporat-
ing real-time data, predictive analytics, and machine learning, 
these solutions can streamline operations, reduce costly dis-
ruptions, and improve overall reliability and capacity. Hence, 
continued research and development of modern automated 
conflict resolution tools is critical to overcoming the limita-
tions of manual, localized dispatching and creating a more 
efficient, resilient, and future-proof rail network.

There are many references in the English-language litera-
ture to methods and tools for resolving movement conflicts 
or rescheduling. D’Ariano et al. (2008a) developed the ROMA 
(Railway traffic Optimisation by Means of Alternative Graphs) 
model based on alternative graph theory. Using this model, 
they carried out a series of experiments that involved the 
railway line between Utrecht and ‘s-Hertogenbosch and the 
stations Utrecht Central and Amsterdam Schiphol Airport 
(D’Ariano et al. (2008b), Schaafsma & Bartholomeus (2007)). 
Flamini and Pacciarelli (2008) conducted a study on resched-
uling for stations at the metro terminal and Gely et al. (2006) 
between Tours and Bordeaux on the French SNCF railway 
network. Mannino and Mascis (2009) resolved traffic conflicts 
on the underground rail network in Milan, Italy (Azienda 
Trasporti Milanesi (ATM)). Albrecht et al. (2011), in turn, con-
ducted research on the Danish and German networks (as did 
Lusby et al. (2013)), while Caimi et al. (2012) on the Swiss 
network for Bern. The literature review presented above only 

indicated areas where analytical solutions to traffic conflicts 
have been made using a mathematical formulation of the 
rescheduling problem. Behind each item cited is a different 
way of formulating or solving the problem. It should also be 
noted that only selected implementations have been indi-
cated. There are many more references in the literature on 
conflict resolution on the railway network with their practical 
implementation.

2. Defining railway traffic conflicts

According to the EU Directive 2016/797 on the interoper-
ability of the rail system within the European Union, railway 
traffic can be defined as the procedures and related equipment 
enabling the coherent operation of the different structural 
subsystems (infrastructure, energy, control-command and 
signalling (trackside and on-board layers), rolling stock), 
both during normal and degraded operation, including, in 
particular, train formation and train driving (traffic manage-
ment layer), traffic planning and traffic management. In ad-
dition, the professional qualifications that may be required 
to operate any railway service are relevant to railway traffic. 
According to the aforementioned Directive, railway traffic is 
one of the three functional subsystems of the railway system 
(alongside maintenance and telematics applications).

Several people are responsible for ensuring that train traffic 
runs as safely and uninterruptedly as possible. On the part 
of the railway undertaking, these are the transport offer con-
structors - the timetable constructors in the traffic planning 
layer. In the traffic management layer, these are the train 
crew - the train manager and possibly the conductor(s) - and 
the traction crew (the engine driver, possibly together with 
a second engine driver or a trainee engine driver). On the 
other hand, in the traffic management layer, these are the 
dispatchers of the undertakings. On the infrastructure man-
ager’s side, in the traffic planning layer, they are the timetable 
constructors, in the traffic operation layer, they are the traffic 
controllers, signallers and other operating staff, and in the 
traffic management layer, they are the line dispatchers.

Trains run on the railway network according to a prede-
termined plan - the timetable. It represents the ideal or-
ganisation of railway traffic, where all safety conditions are 
maintained, and the guarantee of possible uninterrupted 
(uninterrupted) train running is guaranteed. As train traffic 
is stochastic, there is a risk that some unforeseen event may 
disrupt the ideal organisation of train traffic on the network. 
This event may be related to a problem in any of the struc-
tural subsystems (for example, a defect in a component of 
the railway infrastructure, a problem in the traction energy 
supply, a failure of the control or supervision equipment or 
a failure of the rolling stock) or factors outside the control 
of the railway (for example, severe weather conditions or an 
accident with a human or a road vehicle). This disruption 
can have more or less negative consequences. As a conse-
quence of the delay of a specific train due to a specific event 
(which is called primary delay), secondary delays may occur 
(both for other trains and the initially delayed train). Their 
amount depends mainly on how much of the changed train 
path (changed due to the delay generated by the occurrence 
of the undesirable event) will have traffic conflicts with the 
paths of other trains that are running as scheduled or may 
be delayed by another undesirable event, and how they will 
be resolved.

3. Promising machine learning approaches

The increasing complexity of railway traffic management 
and the need for real-time conflict resolution necessitate 
advanced computational approaches. Machine learning (ML) 
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offers a powerful toolkit to address this challenge by enabling 
automated detection, prediction, and resolution of railway 
conflicts. This section explores the most promising ML tech-
niques applicable to traffic conflict optimisation, evaluating 
their suitability for real-time and predictive decision-making 
in railway operations.

ML approaches applicable to railway conflict resolution 
can be broadly categorised into supervised learning, rein-
forcement learning (RL), and unsupervised learning. Each 
paradigm offers distinct advantages depending on the com-
plexity and dynamism of the problem.

−− Supervised Learning is useful for predicting train delays 
and classifying conflict scenarios based on labelled his-
torical data.

−− Reinforcement Learning enables adaptive decision-mak-
ing in dynamic railway environments, optimising traffic 
flow through sequential actions.

−− Unsupervised Learning can cluster traffic patterns to iden-
tify potential conflict-prone areas and infer new conflict 
resolution strategies.

These ML methods, when integrated with a railway Traffic 
Management System (TMS), can significantly improve real-
time conflict resolution.

3.1 Supervised Learning for Conflict Prediction and 
Classification

In railway traffic management, anticipating conflicts before 
they occur is crucial for ensuring smooth operations and 
minimising disruptions. In this context, supervised learning 
methods offer a powerful means of predicting train delays and 
classifying potential conflict scenarios. By training models 
on past railway operations, supervised learning can enhance 
decision-making processes by providing early warnings of 
possible conflicts, allowing for timely intervention (Selin 
and Ismail (2013)).

One of the most practical applications of supervised learn-
ing in railway operations is delay prediction, which relies on 
models trained on extensive historical datasets, including 
train schedules, dwell times, weather conditions, and infra-
structure availability. Decision trees, Random Forests, and 
Gradient Boosting Machines (GBM) have demonstrated strong 
performance in this domain by identifying patterns that lead 
to train delays (Tiong, Ma & Palmqvist (2003), Sarhani and Voß 
(2024), and Karimi-Mamaghan et. al (2021)). By continuously 
updating these models with new data, railway operators can 
generate accurate delay forecasts, allowing dispatchers to 
take preventive measures before conflicts arise.

Beyond delay prediction, supervised learning can also be 
used for conflict classification, enabling the system to cat-
egorise different types of railway traffic conflicts, such as 
catch-up, crossing, and proximity conflicts (as outlined in 
Section 2). Support Vector Machines (SVMs) and Neural Net-
works have proven effective in distinguishing between these 
conflict types by analysing real-time data on train positions, 
movement speeds, and schedule adherence. By automating 
this classification process, Karimi-Mamaghan et. al (2021) 
argues that traffic controllers can receive real-time alerts 
about emerging conflicts, enabling faster and more informed 
decision-making.

Supervised learning models have been effectively em-
ployed  both to predict train delays and classify conflict sce-
narios. For instance, the Swedish MATRIX project developed 
and evaluated a ML model to assist train dispatchers in re-
solving potential timetable conflicts during disturbances (Sai 
Prashanth (2024))Error! Reference source not found..

Despite their advantages, supervised learning models re-
quire large, high-quality datasets to achieve reliable perfor-

mance. The success of these models depends on the availabil-
ity of comprehensive historical records, which may not always 
be structured or complete. Additionally, while supervised 
models excel at predicting and classifying conflicts, they do 
not inherently suggest optimal resolutions, making their in-
tegration with other decision-support mechanisms, such as 
reinforcement learning, an essential step toward achieving 
a fully automated traffic conflict management system.

3.2 Reinforcement Learning for Dynamic Conflict 
Resolution

While supervised learning focuses on forecasting conflicts, re-
inforcement learning (RL) provides a machine learning frame-
work that learns how to actively resolve them in real-time. 
Unlike traditional optimisation techniques, which rely on 
static rules and heuristics, RL-based approaches learn optimal 
strategies through trial and error, making them particularly ef-
fective in highly dynamic environments such as railway opera-
tions. By continuously interacting with the railway network, 
RL agents refine their decision-making policies to minimise 
disruptions and improve scheduling efficiency.

According to Lingbin et al. (2019) one of the most prom-
ising applications of RL in railway traffic management is 
adaptive train dispatching, where RL models optimise train 
departure sequences and track allocations based on real-time 
network conditions. Conventional dispatching systems rely 
on predefined priority rules, which may not always be opti-
mal under unexpected disruptions. RL-based systems, on the 
other hand, dynamically adjust train schedules to minimise 
delays while ensuring safe separation between trains. Deep 
Q-Networks (DQN) and policy gradient methods have been 
successfully used in similar domains to optimise sequential 
decision-making, demonstrating their potential for improv-
ing railway traffic flow says Nguyen et al. (2019).

Another key advantage of RL is its ability to reschedule 
train operations dynamically in response to unforeseen dis-
turbances, such as track blockages or equipment failures. 
Multi-Agent Reinforcement Learning (MARL) extends RL 
capabilities by enabling collaborative approach in resolv-
ing conflicts (Zhuang et al. (2022)). Instead of optimising 
decisions in isolation, MARL facilitates coordinated conflict 
resolution across multiple network segments, resulting in 
more efficient traffic flow and reduced cascading delays.

Despite its strong potential, RL in railway applications 
poses several challenges. Training RL models requires exten-
sive simulations in environments that accurately represent 
real-world railway dynamics, including variations in infra-
structure, train speeds, and passenger demand. Additionally, 
ensuring safe exploration is critical; while RL agents typically 
learn by trial and error, railway operations cannot afford risky 
decision-making during live deployment. Techniques such as 
constrained RL and risk-aware learning can help mitigate this 
issue by ensuring that learned policies adhere to operational 
safety constraints.

The integration of RL into real-world TMS also requires 
a careful balance between automation and human oversight. 
While RL-based decision-support systems can propose op-
timal conflict resolution strategies, railway operators may 
still need the final authority to validate and implement these 
recommendations. A hybrid approach, combining RL with 
expert-driven rule systems, may offer the most practical path 
toward integrating AI-driven traffic management into exist-
ing railway control workflows.

3.3 Unsupervised Learning for Conflict Detection 
and Pattern Recognition

Beyond resolving conflicts in real time, an essential aspect 
of railway traffic management is identifying conflict-prone 
areas and understanding underlying traffic patterns. Unsu-
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pervised learning techniques provide valuable insights by 
discovering structures in data without requiring predefined 
labels, making them particularly useful for clustering and 
anomaly detection. 

One practical application of unsupervised learning in 
railway traffic management is detecting high-risk conflict 
zones based on historical congestion patterns. Md Siddiqur, 
Laurent and Josaine (2022) note that by clustering railway 
segments with frequent traffic bottlenecks, algorithms such 
as k-Means and DBSCAN can identify regions where conflicts 
are most likely to occur, helping infrastructure managers 
implement proactive measures such as track expansion, 
scheduling modifications, or automated conflict resolution 
strategies. 

Another significant use of unsupervised learning is anom-
aly detection in train operations, which can serve as an early 
warning system for potential conflicts. Unsupervised mod-
els, such as autoencoders and Isolation Forests, can analyse 
deviations from normal traffic behaviour, identifying train 
movements that do not align with expected operational pat-
terns. These anomalies may indicate scheduling conflicts, 
unexpected delays, or even potential safety hazards.

The significant potential of deep unsupervised learning 
algorithms for road traffic conflict identification and vali-
dation was identified by Lu (2022). By identifying the most 
influential variables in train scheduling and movement, PCA 
facilitates the development of more efficient traffic manage-
ment models. These insights can then be used to refine exist-
ing rule-based systems or improve ML-based decision-making 
frameworks.

3.4 Integration of Machine Learning into Traffic 
Management Systems

For ML-based conflict resolution to be effective in practice, 
it must be seamlessly integrated into existing TMS. This in-
tegration involves both offline and online solutions, each 
serving distinct but complementary roles. Offline ML models 
analyse historical data to uncover patterns and inform long-
term planning, while online ML models operate in real time, 
continuously updating predictions and recommendations 
based on live data inputs.

One of the key challenges in deploying ML within TMS 
is ensuring interpretability and reliability. While complex 
deep learning models can achieve high predictive accuracy, 
railway operators require transparent decision-making pro-
cesses to trust and act upon AI-driven recommendations. 
A hybrid approach, combining traditional rule-based sched-
uling with ML-driven optimisation, offers a practical path-
way to adoption. This ensures that AI augments, rather than 
replaces, human expertise in railway dispatching and traffic 
control. This approach is apprised by projects supported with 
EU funds such as Europe’s Rail or RAIL projects as noted by 
Ferreira (2023).

Lessons from other transportation sectors, such as air 
traffic control and urban road traffic management, provide 
valuable insights into ML integration strategies as well. For 
instance, reinforcement learning has been successfully ap-
plied in air traffic flow management (Crespo, Li and Gomes 
de Barros (2012)), while unsupervised clustering methods 
are widely used in urban congestion analysis as pointed by 
Nguyen et al. (2019). These applications suggest that similar 
methodologies can be adapted for railway systems to enhance 
scheduling robustness and minimise disruptions.

Moving forward, a simulation-based framework (see Fig-
ure 2) will be essential for evaluating the effectiveness of 
different ML models before real-world deployment. A well-
designed simulation environment will allow railway plan-
ners to test ML-driven conflict resolution under diverse 
operational scenarios, comparing different algorithms in 

terms of resolution time, efficiency, and scalability. Such an 
empirical evaluation will provide a foundation for refining 
ML approaches and ensuring their practical applicability in 
large-scale railway networks.

By leveraging machine learning for both proactive con-
flict detection and real-time resolution, railway operators can 
move toward a more intelligent, adaptive, and resilient traffic 
management system. The continued advancement of ML-driv-
en optimisation strategies holds the potential to significantly 
improve railway reliability, reduce delays, and enhance overall 
passenger and freight transport efficiency. 

4. Draft of future simulation framework

Next phase of the project will focus on the evaluation and 
numerical simulation of the effectiveness of investigated al-
gorithms. The evaluation framework should consist of three 
principal components: (1) a simulation environment that 
accurately models railway infrastructure, train dynamics, 
and conflict scenarios; (2) an ML module trained on historical 
and synthetic data to predict and resolve potential conflicts; 
and (3) an integration interface that allows real-time data 
exchange between the simulation and the ML system. By 
systematically varying traffic density, incident frequency, 
and operational conditions, the framework facilitates com-
prehensive sensitivity and robust analyses. Statistical tech-
niques, such as hypothesis testing and confidence interval 
estimation, are employed to validate performance gains over 
conventional conflict resolution strategies. 

5. Conclusion and future work

This paper presented an overview of railway traffic conflicts 
and mechanisms related to their resolution, emphasizing the 
need to deploy automated rescheduling systems for efficient 
railway disruption management. We categorized conflict 
types, identified key optimization criteria, and reviewed prom-
ising ML techniques for optimal conflict resolution, including 
supervised learning for conflict prediction, reinforcement 
learning for dynamic resolution, and unsupervised learning 
for conflict patterns recognition. The findings highlight the 
limitations of current manual conflict resolution methods, 
which often lead to suboptimal, locally-focused decisions. 
Automated approaches leveraging ML have the potential to 
provide more efficient, system-wide solutions, reducing de-
lays and improving overall network resilience.

Figure 1: Building blocks of conflict resolution testing framework
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The next phase of research will focus on developing a sim-
ulation framework for evaluating ML-based conflict resolu-
tion strategies. This framework will integrate real-world 
railway traffic data, allowing for empirical testing of ML 
algorithms under varying operational conditions. Key areas 
of investigation will include real-time implementation fea-
sibility, decision interpretability for dispatchers, and safety 
constraints in automated scheduling adjustments. Addition-
ally, further research will explore the integration of ML-
based decision-support tools into existing Traffic Manage-
ment Systems (TMS) to ensure seamless adoption by railway  
operators.

By advancing AI-driven traffic conflict resolution, this re-
search contributes to the broader goal of enhancing railway 
efficiency, reliability, and sustainability. The long-term vision 
is a fully adaptive and intelligent railway traffic management 
system, where machine learning supports dispatchers in 
making optimal, system-wide decisions in real-time. Future 
work will also explore the application of hybrid AI-human 
decision-making frameworks, ensuring that automation com-
plements, rather than replaces, human expertise in railway 
operations importance. 
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