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Abstract: Traffic congestion has widespread negative impacts on the 
environment, urban development, and road safety, leading to increased 
commute times and heightened incidents of road rage and accidents. 
Evaluating congestion, particularly in relation to speed humps, be-
comes crucial due to their complex impact on traffic flow. Although few 
studies have explored delay estimation and lane-changing behaviour 
at speed humps, the larger issue of traffic congestion has received less 
attention. Recognizing and measuring congestion levels at these humps 
can be pivotal in devising specified strategies to alleviate the challenge. 
The present investigation focused on adapting travel time reliability 
metrics, specifically the Planning Time Index (PTI) and Travel Time 
Index (TTI), to consider the influence of speed humps. These adjusted 
metrics have been used to assess congestion in two critical zones: the 
area before the speed humps where vehicles slow down and the sec-
tions covering the humps. The study took a comprehensive approach 

by using video analysis to gather data on various vehicles operating 
on the road. Subsequently, the PTI and TTI were analyzed for their re-
lationships with different speed percentiles (98th, 85th, and 15th). The 
findings revealed compelling correlations allying PTI, TTI, the 15th and 
85th percentile speeds, surpassing the relation with the 98th percentile 
speed. This analysis formed the basis for a congestion severity index, 
outlining distinct congestion levels. The study employed K-means clus-
tering, ensuring a logical and data-driven categorization of congestion 
severity at speed humps. To sum up, this research not only enhances 
our understanding of traffic congestion at speed humps but also lays 
the groundwork for implementing targeted measures to effectively 
mitigate these issues.

Keywords: Speed humps; Traffic congestion; Travel time index; Plan-
ning time index; Clustering

1. Introduction1

Traffic congestion is a pervasive issue with profound implica-
tions for urban life, impacting the environment, economic 
growth, and the well-being of city dwellers. It extends com-
mute times, fosters frustration among road users, increases 
the likelihood of accidents, and exacerbates road rage (Reed 
and Kidd, 2019). Researchers have provided various technical 
definitions for traffic congestion. According to some authors 
(Aftabuzzaman 2007; Afrin and Yodo 2020; Samal et al., 2020; 
Kumar et al 2020) traffic congestion arises when the volume 
of travel exceeds capacity or when there are more volumes 
than it was originally planned to accommodate.

Among the various traffic management elements, speed 
humps are often perceived as a solution to enforce reduced 
speeds, enhance road safety, and minimize traffic-related 
problems in residential and commercial areas (Samal et al., 
2022a; Samal et al., 2022b). Speed humps are engineered to be 
crossed comfortably at a specific speed (Jain et al., 2012). In 
India, IRC 99-2018 contains guideline for the design of traffic 
calming devices such as speed humps. It stipulates that vehi-
cles should not be forced to decelerate below 20 kmph while 
traversing these humps. Numerous researchers (Wortman 
and Fox, 1994; Bennett and Dunn, 1995; Akçelik and Besley, 
2001; Wang et al., 2005) have documented the substantial de-
celeration rates experienced at speed humps, contributing to 
the transition of the traffic flow into a congested state. Several 
other researchers (Pau, 2002; Jain et al., 2012; Antic et al., 
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2013) have also highlighted that the significant reduction 
in vehicle speeds when traversing speed bumps plays a role 
in exacerbating congestion. However, the presence of speed 
humps introduces complex dynamics into traffic flow, rais-
ing questions about their impact on congestion (Mohanty 
et al., 2021; Samal et al., 2022a, Samal et al., 2024). While 
previous studies have explored aspects like delay estimation 
and lane-changing behaviors related to speed humps, there 
remains a dearth of studies that comprehensively investigate 
traffic congestion at these road features. Understanding the 
congestion dynamics at speed humps is essential for effective 
traffic management, as this information can guide location-
specific measures to alleviate congestion, improving overall 
road safety and traffic flow.

The use of TTI and PTI is widespread globally for evaluating 
traffic congestion on any road (Lyman and Bertini, 2008; Rao 
and Rao, 2012; He et al., 2016; Samal et al 2020; Samal et al 
2021; Samal et al 2022b). While modern approaches like fuzzy 
logic, VISSIM software simulations, artificial neural networks 
(ANN), queuing analysis, and others are employed for conges-
tion assessment, congestion indices remain a preferred choice 
due to their capacity to directly represent real-world condi-
tions (Padiath et al., 2009; Mohanty et al., 2023; Samal et al., 
2023). Nevertheless, despite its fundamental importance, 
speed has not been directly incorporated into the calculation 
of these congestion indices. Even though speed influences 
travel times, which are integral to congestion index deter-
minations, the conventional approach relies on mean and 
off-peak travel times as well as the 95th percentile, while 
overlooking the 15th percentile speed. The 15th percentile 
speed stands out as a critical indicator of congestion as it 
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gauges the speeds of the slowest vehicles in the traffic flow. 
It’s worth noting that the congestion indices are typically 
designed for midblock segments and are not tailored for as-
sessing congestion specifically at speed humps. Therefore, 
in this study, we have attempted to design a congestion se-
verity level at speed humps where the initial step involves 
adapting the existing congestion indices to accommodate the 
unique characteristics of speed humps. Minor adjustments 
were made to the conventional definitions to align with the 
peculiarities of speed humps. Subsequently, speed, including 
its various aspects such as the 98th, 85th, and 15th percentile 
speeds, was incorporated and analyzed in conjunction with 
the congestion indices. This comprehensive approach aimed 
to enhance the assessment of congestion specifically at speed 
humps. Lastly, a clustering technique was applied to classify 
the severity levels of congestion systematically. Crucially, 
the applicability of the present findings extends to 6-lane 
divided roads with speed humps. However, the underlying 
methodology can be adapted for use in other road typologies. 
These proposed congestion levels offer a more nuanced and 
insightful approach to evaluating congestion at speed humps 
in comparison to a sole reliance on congestion index values. 
Ultimately, this study plays a pivotal role in identifying con-
gestion levels and categorizing traffic congestion at speed 
humps, thus serving as a valuable resource for formulating 
location-specific strategies to mitigate this issue.

2. Data collection and extraction

To assess traffic congestion caused by speed humps, data was 
collected from various speed humps located on urban roads 
divided into 6 lanes in Bhubaneswar, India. Bhubaneswar, 
categorized as a smart city of tier-II, has a population of ap-
proximately 1.5 million. The classification of Indian cities is 
a ranking system used by the Government of India for various 
purposes like knowing the population range, the amenities 
available, along with prices of commodities which helps in 
assessing the various allowances that are given to government 
employees. Based on population, as developed by Reserve Bank 
of India (RBI), there are 6-tiered classification of cities where 
population greater than 1,00,000 (in 2011 census) is classified 
as tier-1 city. Similarly, a population of 50,000 to 99,999 (in 
2011) is placed in Tier – 2 city. Bhubaneswar is placed in tier – 
2 city based on the 2011 census. Tier – 2 cities are the cities 
where infrastructure and investments are steadily increasing 
but haven’t hit the peak levels yet. Real estate prices usually 
rise in these markets with sustained development. Presently 
the population of Bhubaneswar has exceeded 10 lakhs but as 
per the 2011 census the tiering is classified. Similarly, Govern-
ment of India has introduced the Smart city concept in 2015 
with an aim to promote sustainable and inclusive cities that 
provide core infrastructure and give a decent quality of life to 
its citizens, a clean and sustainable environment along with 
application of ‘Smart’ Solutions. Based on a competition/se-
lection, various cities were declared as smart cities in 2018, 
and Bhubaneswar is one of them. The selection of this city 
was based on its representation of tier-II cities across India, 
sharing similar demographics. To analyze congestion using 
congestion indices, details was gathered from the initiation 
of the slow-down section (the area upstream of speed humps 
where vehicles begin to decelerate/Start applying brakes) 
situated about 20 meters ahead of the speed hump, extend-
ing to the end of the speed hump. Field data was collected 
along a 60-kilometer stretch of main roads within an Indian 
smart city, stemming from NH 16. For this study, the emphasis 
was placed on selecting the most significant roads. The road 
surfaces were primarily bituminous pavements, and the data 
recording periods were characterized by predominantly sunny 
weather, occasionally featuring partial cloud cover.

Speed data was derived from traffic data that was gathered 
in the field. The process involved the utilization of two cam-
eras for the purpose of data recording. The configuration of 
the camera arrangement employed for the data collection is 
visually depicted in Figure 1 as presented below.

Four sections, each spanning 5 meters, were designated 
upstream of the speed humps. Data collection was conduct-
ed at various times of the day. The duration for vehicles to 
traverse these 5-meter segments was recorded, enabling the 
calculation of speeds for each vehicle. The captured videos 
were displayed on a monitor using Kinovea, a freely acces-
sible video editing software (Samal et al 2022a; Mohanty 
et al 2023). 

3. Congestion indices and methodology

The key congestion indices, as outlined in different literature 
sources (Lyman and Bertini, 2008; Samal et al., 2022b; Mo-
hanty et al., 2023; Samal et al., 2023), are presented below 
along with their default formulas or expressions.

(1)

(2)

(3)

However, this study was conducted specifically at speed 
humps, which required modifying the definitions of con-
gestion indices to align with speed hump characteristics. In 
this research, average travel times for both the slowdown 
stretches and the zone within the speed hump were recorded. 
Additionally, the 95th percentile travel time was computed 
from the gathered travel time data. The steady and unaffected 
speed observed beyond 20 meters from the commencement of 
the speed hump in the upstream route (where the influence of 
the speed hump is minimal or nonexistent) was applied to de-
termine off-peak travel time. Using the collected data, various 
congestion indices were computed. The obtained results were 
then compared with various percentile speeds and a model 
was formulated to directly obtain the congestion index values 
without needing travel times. Finally, a range of the indices 
for various congestion severity levels were identified using 
clustering technique. Travel times were extracted and com-

Fig. 1 Arrangement of cameras for the collection of data along with 
an image capture from one of the specific locations
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puted to ascertain different congestion indices. Subsequently, 
an array of quantitative and descriptive analyses was utilized 
to investigate congestion at the speed humps. The study em-
ployed two congestion indices, specifically the PTI and TTI, 
for the assessment of congestion. The Buffer Index (BI) was 
excluded from consideration in this study since initial calcu-
lations indicated that it does not adequately accommodate 
the variations in 95th and 15th percentile speeds or travel 
times under extremely excessive and moderate volumes. This 
discrepancy may arise from the fact that PTI and TTI com-
pare travel times to off-peak or Uninfluenced conditions, in 
contrast BI compares travel times to the average travel time, 
potentially leading to bias if there’s a significant presence of 
vehicles moving at slow or high speeds.

It is worth noting that many derived traffic parameters 
stem from fundamental traffic measures such as speed, flow 
and density. Traffic congestion indices are deduced from travel 
time, which indirectly reflects speed. Operating speeds, a cru-
cial metric for assessing traffic flow, have well-documented 
practical applications in real-world scenarios. Therefore, it is 
more straightforward to analyze traffic congestion in terms 
of speed rather than travel time.

Standard speed calculations like 98th, 85th, or 15th per-
centile values for any given road are imperative for determin-
ing lower speed limits, safe speed limits and design speed. 
Thus, it is logical to associate various congestion indices 
using percentile speeds. This correlation not only enhances 
the evaluation of traffic congestion on speed humps but also 
directly ties it to a fundamental traffic parameter. Notably, 
the15th percentile speed represents the lower speed limit 
and the 85th percentile speed signifies the upper speed limit. 
Around 70% of road users typically adhere to speeds within 
these percentile ranges. Therefore, if two roads with the same 
85th percentile speed exhibit different 15th percentile speeds, 
or other way around, that exhibit distinct traffic flow condi-
tions. For instance, if road 1 and road 2 have the same 85th 
percentile speed but 15th percentile speeds of 25 kmph and 
20 kmph, respectively, it indicates that road 2 has more ve-
hicles operating at lower speeds, rendering it more suscep-
tible to traffic congestion. Thus, these percentile speeds play 
a crucial role in congestion assessment.

In this study, clustering techniques were used to classify 
congestion levels based on percentile speeds. Clustering is 
a prevalent method for sorting data into a predetermined 
number of groups, relying on the Euclidean distances between 
data points (Mohapatra et al., 2012; Mohanty and Dey, 2019; 
Monteserin., 2018); Boora et al., 2017). Among the clustering 
techniques, K-means is frequently utilized when dealing with 
large datasets featuring normally distributed data points. 
Cluster analysis involves grouping objects based on the data 
describing their relationships. The goal of clustering is to 
organize data such that points within the same group are like 
each other, while being different from points in other groups. 
In a well-defined cluster, data points are closer to the center of 
their own group compared to the centers of other groups. An 
effective clustering method yields clusters where the distance 
within each cluster (intra-cluster distance) is small, and the 
distance between different clusters (inter-cluster distance) 
is large (Jain and Dubes; 1988). Commonly used clustering 
in traffic engineering includes K-means, K-medoid, and hi-
erarchical agglomerative methods. In this study, K-means 
clustering was employed to group data points. SPSS software 
was utilized for both cluster analysis and validation. K-means 
clustering is an unsupervised hard partitioning method used 
to address classification problems (Mohapatra and Dey; 2015). 
The K-means method uses within-cluster variation to form 
homogeneous clusters. Specifically, it aims to segment data 
such that the variation within each cluster is minimized. The 
clustering process begins by randomly assigning objects to 

different clusters. These objects are then repeatedly reas-
signed to other clusters to minimize within-cluster variation, 
measured as the squared distance from each observation to 
the center of its associated cluster. If reassigning an object to 
a different cluster reduces the within-cluster variation, the 
object is moved to that cluster (Sarstedt and Mooi; 2014). In 
K-means clustering, the number of clusters must be prede-
termined by the researcher, or it can be determined using 
hierarchical clustering methods. However, K-means gener-
ally outperforms hierarchical methods as it is less sensitive 
to outliers and irrelevant clustering variables. Additionally, 
K-means is well-suited for very large datasets following a nor-
mal distribution, as it is computationally less demanding than 
hierarchical methods (Sarstedt and Mooi, 2014; Kanungo 
et al., 2002). They also recommend using the K-means clus-
tering process for datasets larger than 500. Silhouette could 
be used to define the number of clusters (K) for clustering 
analysis (Rousseeuw, 1987). Several studies [Arbelaitz et al., 
2013; Pollard and Van der Laan, 2002] have found that the 
silhouette width index performs well in numerous compara-
tive experiments. Boora et al., (2017) state that an average 
silhouette value between 0.71 and 1.00 indicates a strong 
cluster. Additionally, it is important to ensure that the means 
or centers of these clusters are significantly different from 
each other at the 5% significance level. Additionally, the clus-
tering process continues until a predetermined number of 
iterations is reached or convergence is achieved (Sarstedt and 
Mooi, 201; Jain et al., 1999). Convergence is a crucial aspect of 
the k-means clustering technique. It occurs when the cluster 
affiliations no longer change (Jain et al., 1999). Convergence is 
attained through iterative steps. Initially, SPSS computes the 
cluster centers based on the predefined number of clusters. 
Lloyd’s algorithm is a well-known heuristic used for k-means 
clustering (Kanungo et al., 2002; Jain, 2010; Berkhin, 2006]. 
According to Yadav and Sharma (2013), Loyd’s algorithm 
can be succinctly described in two phases. In the first phase, 
K centroids are initially chosen randomly, where K represents 
the number of predefined clusters. In the second phase, each 
data point in the set is assigned to the nearest centroid based 
on Euclidean distance. If a data point is closer to another 
centroid than its initially assigned centroid, the assignment 
is updated until all data points within a cluster are closest to 
their cluster’s centroid.

A meticulously crafted research methodology is essential 
for producing dependable and valid outcomes, guaranteeing 
that research discoveries make a substantial contribution to 
the existing knowledge within a specific domain. The present 
investigation employed the research approach outlined in 
Figure 2.

Fig. 2 Flowchart depicting the methodology.
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4. Results and analysis 

Each speed hump on both sides of traffic flow was measured 
using a measuring tape and leveling staff. The chord length, 
height, and arc length of each speed hump were recorded. 
Figure 3 illustrates the definitions of chord length, height, and 
arc length of speed humps in the context of this study. Accord-
ing to Indian Road congress (IRC) specifications, humps are 
typically either trapezoidal or circular. However, in the study 
area, all the speed humps were designed as circular.

A total of 12 speed humps were identified on the studied 
road network. The chord lengths and heights of these speed 
humps are detailed in Table 1 below.

Table 1 shows that the chord length of speed humps 
ranges from 0.98 m to 2.25 m, with an average chord length 
of 1.88 m. Similarly, the height of the speed humps varies 
from 0.06 m to 0.10 m, with an average height of 0.08 m. 
According to IRC specifications, the minimum chord length 
for installing speed humps is 3 meters. However, data from 
Table 1 indicates that the speed humps on the arterial roads 
are improperly constructed. On average, the chord lengths 
of all the speed humps are 40 percent shorter than the mini-
mum prescribed length according to IRC 99-2018. For smooth 
traversal over speed humps, the chord length should be at 
least 3 meters, which is not the case under current traffic 
conditions. This discrepancy forces vehicles to decelerate 
more abruptly, reducing their speed to almost a rolling state, 
leading to congestion and increased wear and tear on the 
vehicles and a higher likelihood of rear-end collisions when 
approaching the speed humps.

Travel times and speed were derived from the captured vid-
eos spanning across 12 distinct speed humps. As explained in 
the ‘Data Collection and Extraction’ and ‘Methodology’ sec-
tions, the study procured speed and travel time data for analy-
sis. The speed data has been acquired in three separate stages.

1.	Uninfluenced speed beyond 20 meters on the upstream 
of speed hump.

2.	 Mean, 98th, 85th, and 15th percentile speeds from beginning of 
slowdown stretches to the commencement of speed hump.

3.	Mean,15th, 85th, and 98th cumulative percentile speeds on 
the speed hump.

Cumulative curves were used to determine the15th, 85th, and 
95th, percentile travel times. The time required for vehicles to 
cover each 5-meter segment in the slowdown section upstream 
of speed humps is measured, specifically for the distances of 
20-15 meters, 15-10 meters, and so on up to the speed hump. 
For each vehicle approaching the speed hump, travel times for 
these segments are recorded, tabulated, and sorted in ascending 
order to identify the minimum and maximum times required 
to traverse each 5-meter stretch. Next, these travel times are 
grouped into specific intervals. For example, the travel times for 
the 20-15 meter segment range from 0.4 to 1.2 seconds, so the 
time intervals for plotting the cumulative curves are 0.4-0.5 sec-
onds, 0.5-0.6 seconds, 0.6-0.7 seconds, 0.7-0.8 seconds, and 
so on, up to 1.1-1.2 seconds. The frequency and cumula tive 
frequency of these occurrences are recorded and used to plot 
cumulative travel time curves. The data points on the plot rep-
resent the midpoints of each time interval group; for instance, 
the midpoint for the 0.4-0.5 seconds interval is 0.45 seconds, 
and for the 0.5-0.6 seconds interval, it is 0.55 seconds.

Fig. 3 Speed hump technical specifications

Table 1. Geometrical measurement of speed humps

Sl. No. Chord length (m) Height (m)

1 1.70 0.07

2 1.97 0.08

3 2.20 0.08

4 1.27 0.08

5 0.98 0.07

6 2.04 0.07

7 2.23 0.10

8 2.25 0.08

9 2.25 0.07

10 1.88 0.08

11 2.15 0.06

12 1.60 0.07

Average 1.88 0.08

Fig. 4 Cumulative travel time curves at 20-15 m from the upstream 
of the speed humps

Fig. 5 Cumulative travel time curves at 15-10m from the upstream 
of the speed humps

Fig. 6 Cumulative travel time curves at 10-5m from the upstream 
of the speed humps
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In the case of speed humps, it’s commonly noticed that 
vehicles slow down as they approach them. The degree of this 
deceleration varies based on changes in traffic volume. Irre-
spective of the volume, a substantial decline in speed occurs 
even during less busy periods/off-peak periods, mainly due 
to challenging geometric design. The methodology employed 
offers a precise and reliable approach to determining traffic 
congestion index values, as it considers real-world traffic 
flow parameters at speed humps. The summarized table in 
Table 2 presents the different travel time indices computed 
using field data from the commencement of the slowdown 
section to the onset of the speed humps, as well as on the 
speed humps themselves.

From Table 2, it is apparent that both congestion indices 
(PTI and TTI) escalate as vehicles approach the speed humps, 
experiencing a significant surge in their values while travers-
ing the speed humps. Nevertheless, the degree of increase 
near the onset of speed humps and on the speed humps may 
potentially exaggerate congestion compared to the congestion 
observed upstream of the slowdown section. In this study, 
speeds were recorded from 70m to start of the speed humps. 
The data revealed that the vehicles started slowing down from 
20 m on the upstream of speed humps. Therefore, the 98th, 
85th, and 15th cumulative percentile speed curves are calcu-
lated and are presented for various road segments leading up 
to speed humps, including the unaffected region (road stretch 
before the deceleration zone), from the beginning of the decel-
eration zone to the commencement of the speed humps, and 
on the speed humps themselves. Prior to that, Figure 9 shows 

the speed variation from 70 m to the start of speed humps. 
A sudden drop in speed can be observed approximately 20 me-
ters upstream of the speed hump. Subsequently, the identi-
fied congestion indices are compared with these speeds to 
evaluate the extent to which percentile speeds are adequately 
considered in the existing congestion indices. Figures 10-14 
and Table 3 illustrate the diverse cumulative percentile speed 
curves covering different road segments.

Fig. 8 Cumulative travel time curves on speed humps

Distance of the road 

stretch on the upstream 

of speed hump

PTI (%) TTI (%) BTI (%)

(20-15) m 138 100 38.64

(15-10) m 168.76 123.87 36.23

(10-5) m 179.53 143.62 25

(5m - start of speed humps) 249.55 188.50 32.38

On the speed humps 461 311.6 95.88

Table 2. Travel time indices at speed humps

Fig. 10 Cumulative percentile speed curves at 20-15 m from the 
upstream of the speed humps

Fig. 11 Cumulative percentile speed at 15-10m from the upstream 
of the speed humps

Fig. 12 Cumulative percentile speed at 10-5m from the upstream 
of the speed humps

Fig. 9 Speed variation as vehicles approach speed humps

Fig. 7 Cumulative travel time curves at 5m-start of speed humps
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The different percentile speeds show a consistent decreas-
ing pattern as vehicles approach the speed humps. These 
patterns align with the trends observed in the established 
congestion indices. To investigate if there is any correlation 
between the PTI, TTI, and the 98th, 85th, and 15th percentile 
speeds, a Pearson correlation analysis was conducted. The 
results of this analysis are presented in Table 4.

The results from the Pearson correlation are quite sur-
prising. Interestingly, the PTI and TTI results show a more 
robust relationship with the 15th and 85th percentile speeds 
in contrast to the 98th percentile speeds. This suggests that 
TTI and PTI can be accurately derived straightway from any 
one of the percentile speeds.

Generalized linear regression equations for estimating the 
TTI and PTI directly from the percentile speeds are provided 
below. The table below also includes p-values and R-squared 
values for the independent parameters. As observed from the 
equations and their corresponding p-values, the entire es-
tablished equations are statistically significant at a 95% con-
fidence interval or a 5% significance level. This is because the 
p-values are below 0.05 in all instances, except for the equation 
developed for TTI and PTI with the 98th percentile speed. The 
R-squared values are all more than 0.65 for these equations.

While average and 95th percentile travel times are typi-
cally used to evaluate congestion indices, it’s noteworthy that 
stronger R-squared values are observed when these indices 
are calculated from 85th and 15th percentile speeds. This em-
phasizes the capacity to derive congestion indices from speed 
alone, foregoing the need to calculate travel times. However, 
it’s essential to understand that congestion indices alone 
might not be sufficient for highly congested scenarios. There-
fore, a comprehensive congestion assessment should consider 
both percentile speeds and congestion indices. The values of 
the 98th, 85th, and 15th percentile speeds offer insights into 
the real traffic flow condition at speed hump locations, and 
the results indicate that these percentile speeds correlate well 
with congestion indices. In this regard, a congestion sever-
ity index can be established based on the values of the 98th, 
85th, and 15th percentile speeds, rendering congestion index 
calculations unnecessary. It’s essential to note that this study 
pertains to 6-lane divided roads, and if applied to other types 
of roads, a similar methodology should be employed.

In the current study, clustering techniques have been em-
ployed to classify levels of congestion according to percentile 
speeds. In this research, a two-step clustering process is ini-
tially executed to determine the optimal number of clusters. 
Silhouette values, as depicted in Figure 15, are used for this 
purpose. The obtained silhouette value of 0.9 corresponds to 
a very strong membership for 4 clusters, which is considered 
the ideal choice in this context.

Table 5. Utilizing linear regression models for PTI and TTI deter-
mination

Formulated model R-Square p-value

PTI = 542.844 – 8.868*(98th Per. Speed) 0.67 0.088>0.05

PTI = 516.947 – 10.443*(85th Per. Speed) 0.83 0.030<0.05

PTI = 538.657 – 17.240*(15th Per. Speed) 0.93 0.009<0.05

TTI = 378.048 – 5.977*(98th Per. Speed) 0.74 0.060>0.05

TTI = 358.013 – 6.941*(85th Per. Speed) 0.89 0.015<0.05

TTI =369.678 – 11.300*(15th Per. Speed) 0.97 0.003<0.05

Fig. 13 Cumulative percentile speed at 5m-start of speed humps

Fig. 14 Cumulative percentile speed on speed humps

Location/Segments 98h Per. 

Speed

85th Per. 

Speed

15th Per. 

Speed

(20-15) m 51 41.3 25.5

(15-10) m 38.1 32.2 21.5

(10-5) m 37 27.2 18.1

(5-Start of speed humps) 24 21.2 15.5

On the speed humps 21 11 6.2

Table 3. Stretch wise 98th, 85th, and 15th Percentile Speeds

98th 

Per. 

Speed

85th 

Per. 

Speed

15th 

Per. 

Speed

PTI 

(%)

TTI 

(%)

98th Per. 

Speed

Pearson 

Correlation

1 .965** .913* -.821* -.862*

Sig. (1-tailed) .004 .015 .044 .030

85th Per. 

Speed

Pearson 

Correlation

.965** 1 .986** -.913* -.945**

Sig. (1-tailed) .004 .001 .015 .008

15th Per. 

Speed

Pearson 

Correlation

.913* .986** 1 -.962** -.982**

Sig. (1-tailed) .015 .001 .004 .001

PTI (%) Pearson 

Correlation

-.821* -.913* -.962** 1 .996**

Sig. (1-tailed) .044 .015 .004 .000

TTI (%) Pearson 

Correlation

-.862* -.945** -.982** .996** 1

Sig. (1-tailed) .030 .008 .001 .000

**. Correlation is significant at the 0.01 level (1-tailed).

*. Correlation is significant at the 0.05 level (1-tailed).

Table 4. Pearson correlation among congestion indices and per-
centile speeds Fig. 15 Silhouette measure for four clusters



Transactions on Transport Sciences | Vol. 1/202541

As depicted in Table 7, when the average speeds for the 
98th, 85th, and 15th percentiles in the slowdown section 
(20-15 meters from the start of the speed humps) exceed 
44.23 kmph, 35.5 kmph, and 22.65 kmph, respectively, the 
flow of traffic can be described as smooth, indicating no con-
gestion. This is categorized as Congestion Level 0. Likewise, 
if the average 98th percentile speed falls within the range 
of 30.78-44.23 kmph, the 85th percentile speed is within 
25.45-35.50 kmph, and the 15th percentile speed is within 
17.65-22.65 kmph, this signifies mildly congested traffic or 
the initiation of congestion, denoted as Congestion Level 1. 
Other congestion levels have also been established in accord-
ance with the values of different percentile speeds.

However, in real-world scenarios, it’s not always the case 
that the same speed ranges specified in the proposed conges-
tion severity index will be consistently maintained. These 
suggested levels are applicable to the speed humps under 
heterogeneous traffic environment and provide a more com-
prehensive approach to assessing congestion compared to 
solely determining congestion index values.

5. Concluding remarks

This study aimed to comprehensively assess traffic congestion 
because of the existence of speed humps on arterial roads in 
Bhubaneswar, India. The study utilized several congestion 
indices, including the PTI and TTI, to evaluate congestion 
at speed humps. To ensure the relevance of these indices for 
speed humps, the definitions were modified to align with 
speed hump characteristics. Significantly, the research re-
vealed that traffic congestion is not solely dependent on 
these indices. The study introduced a novel perspective by 
emphasizing the role of percentile speeds (98th, 85th, and 
15th percentiles) in assessing congestion. It was observed 
that these percentile speeds exhibit a strong correlation with 
congestion indices, and they can even be used to predict con-
gestion directly. The study employed clustering techniques to 
classify levels of congestion according to percentile speeds. 
Four distinct congestion levels were proposed, each asso-
ciated with specific speed ranges. This approach provides 
a more comprehensive assessment of congestion, especially 
when different percentile speeds fall into different conges-
tion levels.

In the present study, data collection involved video sur-
veys encompassing all vehicle categories. Various speed 

parameters, including the 98th, 85th, and 15th percentile 
speeds, were computed. The assessment of traffic conges-
tion at speed humps was carried out by modifying and ap-
plying travel time reliability metrics, namely the PTI and 
the TTI. The obtained PTI and TTI were correlated with the 
98th, 85th, and 15th percentile speeds. It was observed 
from developed linear regression equations that the con-
gestion indices showed more closeness with the 15th and 
85th percentile speeds (R-square values of 0.97, 0.93, 0.89, 
0.84) as compared to 98th percentile speeds (0.74, 0.67), 
based on their R-square values. Even the equations had 
better R-square with 15th percentile speed (0.97, 0.93) as 
compared to 85th percentile speeds (0.89, 0.84) showcasing 
the sensitivity of congestion more towards 15th percen-
tile speeds. This correlation facilitated the development 
of a congestion severity index with distinct ranges. To 
categorize these congestion levels, the study employed 
the K-means clustering technique. The congestion sever-
ity index was developed in accordance with the values of 
the 15th, 85th and 98th and percentile speeds. This index 
allows for the easy determination of congestion on any 
speed humps without the necessity of using traditional 
congestion indices. The clustering analysis resulted in the 
establishment of values and ranges for all clusters, which 
pertain to different percentile speeds. The study proposed 
four congestion severity levels, designated as Level 0 (rep-
resenting No Congestion), Level 1 (indicating Mild Conges-
tion), Level 2 (signifying Moderate Congestion), and Level 3 
(representing Severe Congestion), all based on the 98th, 
85th, and 15th percentile speeds. These proposed conges-
tion levels are intended to be applicable to all 6-lane divided 
roads with speed humps, offering an improved approach 
to congestion assessment compared to merely calculating 
congestion index values. This study aids in identifying and 
classifying traffic congestion at speed humps, which, in 
turn, can assist in devising location-specific strategies to 
alleviate the issue. It is important to note that while this 
study focused on 6-lane divided roads, the methodology 
and findings can be adapted for application on other types 
of roads, providing a versatile approach to assessing con-
gestion and improving road infrastructure. The results of 
this study contribute to the body of knowledge on traffic 
congestion and offer a valuable framework for future re-
search and practical application in urban road planning and 
management. The proposed congestion severity index offers 
a more detailed understanding of congestion levels, allow-
ing for better-informed decision-making in traffic manage-
ment and road design. Further, the study also reveals that 
the root cause for congestion is due to the geometrically 
faulty speed humps. Therefore, the study can inspire the 
traffic engineers and practitioners to adopt more stringent 
guidelines for constructing speed humps. Various techno-
logical advancements can also be utilized like the sensors 
to measure the average speed and then warn road users 
about congestion ahead due to speed humps.

Final Cluster Centers

Cluster

1 2 3 4

98th Per. Speed 51.00 37.55 21.00 24.00

85th Per. Speed 41.30 29.70 11.00 21.20

15th Per. Speed 25.50 19.80 6.20 15.50

Table 6. Ultimate cluster centers obtained from K-means clustering

98th Per. Speed

(kmph)

85th Per. Speed

(kmph)

15th Per. Speed

(kmph)

Congestion 

severity level

Remarks

> 44.23 >35.50 >22.65 0 No Congestion

30.78-44.23 25.45-35.50 17.65-22.65 1 Mild Congestion (Drivers not able to maneuver on speed humps 

at desired speed)

22.50-30.77 16.10-25.44 10.85-17.64 2 Moderate Congestion (Discomfort with reduced speeds while 

maneuvering over speed humps)

<22.50 <16.10 <10.85 3 Severe Congestion (Vehicles moving at excessively less speeds near 

and over speed humps)

Table 7. Congestion Index according to clustering approach
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